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Executive summary 
This report presents the results of task 7.3 on “Quantification of improvements in carbon flux data for the 
tropical Atlantic based on the multi-platform and neural network approach”.  To better constrain changes in 
the ocean’s capture and sequestration of CO2 emitted by human activities, in situ measurements are needed. 
Tropical regions are considered to be mostly sources of CO2 to the atmosphere due to specific circulation 
features, with large interannual variability mainly controlled by physical drivers (Padin et al., 2010). The 
tropical Atlantic is the second largest source, after the tropical Pacific, of CO2 to the atmosphere 
(Landschützer et al., 2014). However, it is not a homogeneous zone, as it is affected by many physical and 
biogeochemical processes that vary on many time scales and affect surrounding areas (Foltz et al., 2019). The 
Tropical Atlantic Observing System (TAOS) has progressed substantially over the past two decades. Still, many 
challenges and uncertainties remain to require further studies into the area’s role in terms of carbon fluxes 
(Foltz et al., 2019). Monitoring and sustained observations of surface oceanic CO2 are critical for 
understanding the fate of CO2 as it penetrates the ocean and during its sequestration at depth.  

This deliverable relies on different observing platforms deployed specifically as part of the EuroSea project 
(a Saildrone, and 5 pH-equipped BGC-Argo floats) as well as on the platforms as part of the TAOS (CO2-
equipped moorings, cruises, models, and data products). It also builds on the work done in D7.1 and D7.2 on 
the deployment and quality control of pH-equipped BGC-Argo floats and Saildrone data. Indeed, high-quality 
homogeneously calibrated carbonate variable measurements are mandatory to be able to compute air-sea 
CO2 fluxes at a basin scale from multiple observing platforms. 
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1. Introduction  
The global ocean plays a crucial role in regulating the ocean’s climate. Specifically, the ocean takes up about 
~25% of anthropogenic CO2, absorbing an estimated 525 billion tons of CO2 since the industrial era (von 
Schuckmann et al., 2022). The ocean carbon sink has increased over the past 30 years at a pace of 0.06 ± 0.09 
PgC/year. However, uncertainties in the estimates are largely due to a lack of observations. To improve our 
understanding of the ocean’s role in global changes and assess long-term trends in the uptake and storage 
of CO2, sustained high-quality measurements are needed. One area of the global ocean that remains poorly 
constrained in terms of its response to CO2 is the tropical Atlantic. 

Tropical regions are considered to be mostly sources of CO2 to the atmosphere due to specific circulation 
features, mainly through upwelling processes, bringing CO2-rich waters from the deep ocean to the surface 
where outgassing occurs due to high temperatures, with large interannual variability largely controlled by 
physical drivers (Padin et al., 2010). The tropical Atlantic is the second largest source, after the tropical Pacific, 
of CO2 to the atmosphere, releasing about 0.10 Pg C yr−1 (Landschützer et al., 2014). However, it is not a 
homogeneous zone, including for example oxygen minimum areas along the African coasts; the equatorial 
cold tongue along Guinea contrasting with warm nutrient-rich outflows of the Amazonian River. The Tropical 
Atlantic is affected by multiple physical and biogeochemical processes, varying on many time scales, and 
impacting surrounding areas (Foltz et al., 2019). For example, because of its connection to the Atlantic 
Meridional Overturning Circulation (AMOC; Boers, 2021), changes in this region of the ocean have global 
consequences. In this contrasted area, short time series and high natural variability prevent clear carbon 
trends from emerging, though there are indications of decadal variations with large implications for 
anthropogenic CO2 uptake (Park and Wanninkhof, 2012). Furthermore, this area is known to exhibit 
significant interannual variability of air-sea CO2 fluxes closely linked to climate variability (Lefèvre et al., 2013; 
Ibánhez et al., 2017). The Tropical Atlantic Observing System (TAOS) has progressed substantially over the 
past two decades (Speich et al., 2019). Still, many challenges and uncertainties remain requiring further 
studies into the area’s role in terms of carbon fluxes (Foltz et al., 2019). Monitoring and sustained 
observations of surface oceanic CO2 are critical for understanding the fate of CO2 as it penetrates the ocean 
and during its sequestration at depth. 

This deliverable takes advantage of the Saildrone and pH-equipped BGC-Argo floats deployed in the frame of 
the EuroSea project in the area. It also relies on existing moorings equipped with pCO2 sensors, cruises, 
models, and data products focusing on the carbonate system in the ocean. 

In the framework of EuroSea, the aim of this deliverable is, to use a combination of multi-platform 
observations, models, and neural network techniques, to assess our ability to derive air-sea CO2 fluxes in the 
tropical Atlantic region over the last five years (as few data are available for 2022 and 2023, the selected 
period is 2018-2021). This deliverable relies on the work done in EuroSea D7.1 and D7.2 which describe the 
observing platforms deployed in the tropical Atlantic in the EuroSea project (specifically Saildrone and BGC-
Argo floats) and the correction of their data to ensure good quality observations.  

2. Datasets and methods 

2.1. In situ carbon datasets 

Observing platforms 
Numerous datasets acquired through various observing platforms have been used in this study (Figure 1A). 
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Figure 1. Map of the tropical Atlantic (A) showing the in situ data used in this study (cruises (blue squares, Saildrone (red stars), Argo 
float profiles (green dots) and moorings (orange triangles) and (B) showing Longhurst’s (2007) biogeochemical provinces (BGCPs) 

over the in situ data. The BGCPs acronyms are the following: NATR (grey blue), CARB (red), CNRY (cyan), GUIA (brown), WTRA 
(olive), GUIN (green), ETRA (orange), BRAZ (blue), and SATL (purple). 

A Saildrone (SD, red stars in Figure 1A) platform equipped with an ASVCO2 system (PMEL, NOAA) has been 
deployed in the EuroSea mission operating area and recorded data between September 18th, 2021, and 
March 8th, 2022 (see D7.1 (Fiedler et al., 2022) and D7.2 (Wimart-Rousseau et al., 2022) for more details). 
Once the SD was recovered, raw data were downloaded and processed following the procedure described in 
Sutton et al., (2014). The SD measured wind speed at 5 meters above the sea surface, xCO2 in the atmosphere 
together with subsurface xCO2, temperature, salinity, and dissolved oxygen (O2).  
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Five BGC-Argo floats (WMOS 6903874 to 6903878) equipped with pH and O2 sensors were deployed in the 
tropical Atlantic in 2021. Out of the five floats, one’s pH sensor malfunctioned and was remotely turned off 
to preserve the battery. The four other floats continued cycling and are still acquiring data to this day. In D7.2 
and following Argo Delayed Mode Quality Control procedures adapted to the float’s sampling specificities, 
pH from the Argo floats was quality controlled and corrected for sensor drift. Furthermore, 28 O2-equipped 
BGC-Argo floats in total have sampled the tropical Atlantic (green dots in Figure 1A). 

A collection of data products (blue squares in Figure 1A) pertaining to the measurement of ocean carbon 
variables was used. First, the 2022 update from the Surface Ocean CO2 Atlas (SOCAT, Bakker et al., 2016), a 
synthesis of quality-controlled CO2 values for the global surface oceans and coastal seas with direct pCO2sw 
(pCO2 in seawater) values. Second, the 2022 update of the Global Ocean Data Analysis Project 
(GLODAPv2.2022, Olsen et al., 2016; Lauvset et al., 2022), a synthesis effort providing compilations of 
numerous surface-to-bottom ocean biogeochemical data determined through chemical analysis of water 
samples. In terms of the carbonate system, the variables recorded in GLODAP are total alkalinity (AT) and 
total dissolved inorganic carbon (CT), and seawater pH on the total scale at both 25 °C and in situ temperature 
(pHT). Third, data were acquired in the frame of the SOOP (Ship Of Opportunity Program; Goni et al., 2010) 
which records data from volunteer merchant ships regularly crossing the area. Parts of the Atlantic SOOP 
network are operated in the European Research Infrastructure ‘Integrated Carbon Observation System’ 
(ICOS) and the ‘Surface Ocean CO2 Reference Observing Network’ (SOCONET). Specifically, the France-Brazil 
SOOP line has been making underway carbonate chemistry measurements since July 2014 (PI. Nathalie 
Lefèvre at LOCEAN/IPSL in France). Specifically, pCO2sw surface measurements are performed between Le 
Havre, France, and Santos, Brazil (Watson et al., 2018). Fourth, we used the Lamont-Doherty database (LDEO, 
Takahashi et al., 2019) containing global ocean surface pCO2sw from 1957 to 2019 assembling high-quality 
reprocessed pCO2 data obtained using the equilibrator-analyser method. Finally, annual oceanographic 
PIRATA cruises are conducted and performed to ensure the maintenance of the PIRATA mooring network 
but also to perform conductivity-temperature-depth (CTD) casts and in situ biogeochemical parameters 
measurements. Between March and April 2021, the PIRATAFR31 cruise sampled surface and water column 
measurements of AT and CT.  

For GLODAP and PIRATAFR31, as no direct pCO2sw measurement existed when AT and CT were available pCO2sw 
was calculated using CO2SYSMATLABv2 (Lewis et al., 1998; van Heuven et al., 2011). Thermodynamic 
calculations within the carbonate system used the carbonic acid dissociation constants of Mehrbach et al. 
(1973) as refit by Dickson and Millero (1987), the dissociation constant for bisulfate of Perez & Fraga (1987) 
and Uppström (1974) for the ratio of total boron to salinity.  

Since 2008, several deployments of CO2 sensors have been carried out on four PIRATA moorings (Bourlès et 
al., 2018, 2019). Due to various technical issues but also due to vandalism, long-term CO2 time series data 
are difficult to obtain. Since 2017, a mooring has been measuring the fugacity of CO2 at 6°S 8°E in the PIRATA 
network (orange triangle in Figure 1A). The corresponding fCO2 data are archived by SOCAT. The buoy at 6°S 
8°E drifted in 2018 and again in 2019 (Lefèvre et al., 2021), therefore, this site was abandoned leaving us only 
with a limited time series. Since 2020 a mooring has been measuring the fugacity of CO2 at 0°N 10W in the 
PIRATA network, however, its data is still being corrected and is not yet available in SOCAT. 

Data products 
In recent years, more and more models are now aiming to reproduce oceanic CO2 to better study air-sea 
fluxes and the ocean carbon cycle. As in situ data can be scarce and lack spatiotemporal coverage, some 
model outputs were used as comparisons to the in situ observations used in this study.  
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A global gridded 1°x1° surface ocean pCO2 product hereafter named StepCO2 spanning from January 1992 
to December 2020 and reconstructed using a stepwise regression algorithm and a feed-forward neural 
network (Zhong et al., 2021, 2022). It relies on varying predictors depending on the oceanic area among 
latitude, longitude, time, sea surface temperature (SST) and anomaly, sea surface salinity (SSS) and anomaly, 
sea surface height (SSH) and anomaly, Mixed Layer Depth (MLD) and anomaly, 10m wind speed, dry air mixing 
ratio of atmospheric CO2 and anomaly, sea ice fraction, bathymetry, chlorophyll a, and anomaly, the velocity 
of ocean currents at 5m, 65m, 105m, and 195m, sea level pressure and surface pressure, climatologies of O2, 
nitrate, phosphate, and silicate together with the oceanic El Niño Index (Huang et al., 2017) and the Southern 
Hemisphere Annular Mode Index (Marshall, 2003). When validating their algorithm and product with the 
SOCAT dataset and independent observations, Zhong et al., (2022) showed that using regional-specific 
predictors selected by the stepwise FFNN algorithm retrieved a lower predicting error than globally similar 
predictors. For the tropical Atlantic, (‘south Atlantic’ in the paper) they recovered pCO2sw with Mean Absolute 
Error (MAE) and Root Mean Square Error (RMSE) of 11.32 and 17.99 μatm respectively. 

The Global Ocean Surface Carbon Product (MULTIOBS_GLO_BIO_CARBON_SURFACE_REP_015_008, Chau et 
al., 2022), hereafter named Carbonsurf is a dataset delivered by the Copernicus Marine Environmental 
Monitoring service. It contains ocean carbon surface variables on a regular grid (1°x1°) with a monthly 
resolution from 1985 to December 2021. These variables contain pCO2sw, AT, CT, pH, and saturation states for 
surface waters with respect to calcite and aragonite and surface ocean downward mass flux. pCO2sw is 
obtained from an ensemble of feed-forward neural networks (CMEMS-LSCE-FFNNv2, Chau et al., 2022) 
trained on 100 subsampled datasets from SOCAT. As predictors, SSS, SST, SSH, mixed layer depth, 
atmospheric CO2 mole fraction, chlorophyll, pCO2sw climatology, latitude, and longitude are used. Over the 
global ocean, the MAE and RMSD for pCO2sw were 11.99 and 19.32 µatm, respectively (Chau et al., 2022). 

OceanSODA-ETHZ (Gregor and Gruber, 2021; Gregor, 2021), hereafter named OceanSODA, is a 
methodologically consistent global gridded data set of surface ocean carbon variables, namely AT, CT, pCO2sw, 
pH, and the saturation state with respect to calcite at a monthly resolution over the period 1985 through 
2021 at a spatial resolution of 1°x1°. This product was created by extrapolating in time and space pCO2sw 
from SOCAT and AT from GLODAP using the newly developed Geospatial Random Cluster Ensemble 
Regression (GRaCER) method (Gregor and Gruber, 2021). This method is based on an ensemble of cluster 
regressions. For the open ocean, OceanSODA retrieves pCO2sw with RMSE of 14 µatm. 

2.2. Derived variables and miscellaneous data 

Machine learning methods 
Nowadays, machine learning methods such as neural networks are being used more and more for 
oceanographic applications to virtually densify the limited number of measurements that can be done by 
autonomous platforms. These methods allow for the prediction of carbonate system variables with a given 
accuracy, relying only on temperature, salinity, and O2 together with the position in time and space. 
Specifically, carbonate system variables (AT, CT, pCO2sw) were derived using the CONTENT (Bittig et al., 2018) 
neural-network-based method. This neural network method was selected as it ensures consistency between 
carbonate system variables when producing estimates. Therefore, while we cannot measure pCO2sw directly 
from BGC-Argo floats, they can be derived using neural networks. Therefore, for the aforementioned pH-
equipped BGC-Argo floats, pCO2sw was derived through CO2SYS using the pH from the Argo float and AT from 
CONTENT using the float’s O2, temperature, salinity, and pressure. To densify our dataset, we also applied 
the CONTENT neural networks to all O2-equipped BGC-Argo floats in the tropical Atlantic to directly derive 
pCO2sw (28 floats).  
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Figure 2. BGC-Argo pCO2sw profiles (A) and associated error (B) derived directly from CONTENT (dark blue) and derived from the 
float’s pH and CONTENT’s AT (green). Regressions between pCO2 (C) and pCO2 error (D) directly from CONTENT and recalculated. 
The black line represents the 1:1 regression. The mean, median, and standard deviation for CONTENT and recalculated pCO2sw and 

pCO2sw errors are written on panels A and B. 

Differences between pCO2sw predicted directly from CONTENT and pCO2 derived from float-pH data and AT 
from CONTENT are limited (less than 1 µatm in mean, Figure 2). The CONTENT neural network directly 
provides a local uncertainty that was used for pCO2sw. However, pCO2sw uncertainties for the recalculated 
pCO2sw were computed using ‘errors’, a routine for uncertainty propagation for the marine carbon dioxide 
system (Orr et al., 2018) based on the AT uncertainty provided by CONTENT and a pH uncertainty of 0.02 pH 
units (as calculated for EuroSea pH floats in D7.2). Errors for direct pCO2sw estimates are lower than those 
when pCO2sw is recalculated from the Argo float’s pH, but the differences remain moderate (mean difference 
of 2 µatm). Therefore, while in situ pH measurements are essential, it appears that deriving oceanic pCO2 
data directly using a neural network method such as CONTENT can provide comparable results. However, in 
the specific case of EuroSea, pH sensors had a lot of issues among which drift which was corrected during 
delayed mode quality control procedures (details in D7.2, Maurer et al., 2021), largely increasing the pH 
uncertainty. Indeed, for the SOCCOM floats in the Southern Ocean, Johnson et al. (2017) showed that the 
correction of pH from Argo floats can lead, in some cases, to large amounts of high-quality pH data reaching 
accuracies of 0.005 pH units, much lower than ours. For the sake of comparison, we calculated a theoretical 
error propagation in case our pH error had reached 0.005 pH units rather than 0.02 pH units. This would have 
driven the pCO2sw error estimate down to 8.50 ± 1.79 µatm. The deployment of pH sensors on Argo floats 
should thus be maintained, but while being careful of the sensor’s quality before deployment. In cases where 
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no pH sensor is available, good quality O2 from BGC-Argo floats is enough to derive pCO2sw from neural 
network techniques. 

Normalized pCO2sw  
The seasonality of pCO2sw is mainly controlled by SST. To minimize this effect between platforms and areas, 
pCO2sw is normalized to a constant temperature (here 26°C, the average SST in the tropical Atlantic, hereafter 
named pCO2sw@26C) using the method described by Takahashi et al, (1993), with the temperature sensitivity 
of CO2 of 𝛾𝛾T = 4.23% per degree Celsius: 

𝑝𝑝𝑝𝑝𝑂𝑂2𝑠𝑠𝑠𝑠@26𝐶𝐶 = 𝑝𝑝𝑝𝑝𝑂𝑂2𝑠𝑠𝑠𝑠 × 𝑒𝑒𝑒𝑒𝑒𝑒(𝛾𝛾𝛾𝛾 × (26 − 𝑆𝑆𝑆𝑆𝑆𝑆)) 

CO2 fluxes 
To be able to look at air-sea CO2 fluxes rather than only surface pCO2sw, atmospheric pCO2 (pCO2atm) is 
necessary. While the Saildrone measures atmospheric pCO2, it is the only one of the observing platforms 
used in this study to do so. Therefore, we used the SeaFlux dataset (Fay et al., 2021), specifically the update 
for 2021 (personal communication Luke Gregor). This dataset provides a consistent approach specifically 
targeting the most commonly used atmospheric and oceanic pCO2 data products to deliver an end-product 
for intercomparisons within assessment studies such as the Global Carbon Budget (Friedlingstein et al., 2022). 
Specifically, SeaFlux provides the air-sea CO2 flux for different wind products (FCO2), kw the gas transfer 
velocity calculated for winds scaled independently to a 14-C bomb flux estimate of 16.5 cm/hr using the 
quadratic formulation by Wanninkhof (1992), pCO2sw from various sources, the sea ice fraction from the 
OISST product, and pCO2atm calculated from NOAA's marine boundary layer product with ERA5 mean sea level 
pressure corrected for pH2O.  

CO2 fluxes (FCO2, mmol m-2d-1) between the ocean and the atmosphere were computed using the CO2flux 
function from the CO2flux toolbox1 following the equation of Wanninkhof (1992): 

𝐹𝐹𝐹𝐹𝐹𝐹2 =  𝑘𝑘 ×  𝛼𝛼 ×  (𝑝𝑝𝑝𝑝𝑝𝑝2𝑠𝑠𝑠𝑠  − 𝑝𝑝𝑝𝑝𝑝𝑝2𝑎𝑎𝑎𝑎𝑎𝑎) 

where k is the gas transfer velocity for CO2 (in cm.h-1), α is the solubility coefficient of CO2 (in mol L-1 atm-1) 
calculated as a function of temperature and salinity following Weiss (1974), and pCO2sw and pCO2atm are the 
seawater and atmospheric partial pressure of CO2 respectively (in μatm). By convention, a negative (positive) 
sign indicates a flux from the atmosphere to the ocean (from the ocean to the atmosphere). 

The gas transfer velocities have been computed according to the equation proposed by Wanninkhof (1992): 

𝑘𝑘 =  0.31 × 𝑈𝑈10² ×  (
𝑆𝑆𝑆𝑆

660
)−1/2 

where U10 is the wind speed (in m.s-1), and Sc is the Schmidt number (dimensionless) calculated according to 
the equation in Wanninkhof (1992).  

In this study, pCO2atm was obtained from the SeaFlux dataset and is the dry air mixing ratio of atmospheric 
CO2 (xCO2) from the ESRL surface marine boundary layer CO2 product (Dlugokencky et al., 2019)2 multiplied 
by ERA5 sea level pressure (Hersbach et al., 2020) at monthly resolution and applying the water vapor 
correction according to Dickson et al. (2007). The solubility coefficient α was computed using EN4 near-
surface salinity (Good et al., 2013), NOAA Optimum Interpolation Sea Surface Temperature V2 (OISSTv2) 
(Reynolds et al., 2002), and European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 sea level 
pressure (Hersbach et al., 2020). The 10 m surface wind speed was obtained from the ECMWF too. To allow 
                                                           

1 https://github.com/mvdh7/CO2flux 
2 https://www. esrl.noaa.gov/gmd/ccgg/mbl/data.php  
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for coherent calculations in agreement with the resolution of pCO2atm from the SeaFlux toolbox, all available 
data (models described previously, Saildrone, BGC-Argo cruise, and mooring data) were gridded on a monthly 
1°x1° resolution from January 2018 onwards.  

2.3. Anthropogenic CO2 
Anthropogenic CO2 (Cant) emitted by human activities also penetrates the ocean and has a direct effect on 
ocean chemistry. Therefore, estimating Cant concentrations in the ocean represents an important step toward 
a better evaluation of the global carbon budget and its rates of change. Since Cant may not be directly 
measured in the ocean it has to be derived from in situ observations, using several assumptions. In more 
recent years, data-based methods have been developed in an attempt to improve the existing oceanic Cant 
estimates, especially at a regional level (e.g. the TrOCA method, Touratier and Goyet, 2004; Touratier et al., 
2007, the C°IPSL method, Lo Monaco et al., 2005, the 𝜑𝜑𝐶𝐶𝑇𝑇0 method, Vazquez-Rodriguez et al., 2009).   

To study Cant in the tropical Atlantic, we used BGC-Argo O2 data combined with neural network methods and 
a Cant estimation method. As nutrients and carbonate system variables were required by the back-calculation 
method, nutrients (nitrates, phosphates, silicates) were derived using the CANYONB neural networks (Bittig 
et al., 2018) at the O2-equipped BGC-Argo float’s sampling resolution in time and space. Carbonate variables, 
namely AT and CT, were derived using the CONTENT neural networks (Bittig et al, 2018). Then, to estimate 
Cant from the total carbon pool, the back-calculation method 𝜑𝜑𝐶𝐶𝑇𝑇0 was used (Pérez et al., 2008). This method, 
originally developed for the Atlantic ocean requires temperature, salinity, and O2 as well as nutrients, AT, and 
CT together with the location in time and space. It is a process-oriented biogeochemical approach to estimate 
Cant in the Atlantic. The subsurface layer (100–200 m) is taken as a reference for characterizing water mass 
properties at the moment of their formation. The air-sea disequilibrium is parameterized at the subsurface 
layer (Matear et al., 2003) and conservative tracers parameterizations obtained from subsurface data are 
applied directly to calculate Cant in the water column for waters above the 5°C isotherm and via an OMP 
analysis for waters with below the 5°C isotherm.  

3. CO2 and carbon fluxes in the tropical Atlantic 

3.1. Variability within the tropical Atlantic 
To better study the dynamic region that is the tropical Atlantic, it was necessary to subdivide it into coherent 
biogeochemical provinces (BGCPs) corresponding to unique regional environments that shape biodiversity 
and constrain ecosystem structures and functions rather than to look at it as one homogeneous area.  

 

Figure 3. Distribution of the 56 BGCPs: (A) according to Longhurst (2007); and (B) for the average period 1970–2000. Distributions of 
each province were averaged across the three Earth System Models and three Environmental Niche Models. Each color represents a 

BGCP. Color coding refers to panel (A). Source: Reygondeau et al., 2020. 
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While the commonly accepted provinces were defined by Longhurst (2007; Figure 3A), they were revisited 
by Reygondeau et al. (2013, 2020, Figure 3B) to account for seasonal and interannual variability caused by 
phenomena such as the El Niño Southern Oscillation. These refined BGCPs have finer delimitations compared 
to Longhurst’s coarse separations. However, data for these updated provinces were not available for our 
deliverable (contact with the first author), therefore, we used the ‘classical’ Longhurst provinces applied to 
the Tropical Atlantic. 

Figure 3A presents the subdivision of the tropical Atlantic according to Longhurst’s provinces and the in situ 
data used in this study in each area (Saildrone, BGC-Argo floats, moorings, cruises). The 9 provinces are the 
following: NATR (North Atlantic tropical gyral), CARB (Caribbean), CNRY (Canary current coast), GUIA 
(Guianas coast), WTRA (Western tropical Atlantic), GUIN (Guinea current coast), ETRA (Eastern tropical 
Atlantic), BRAZ (Brazilian current coast) and SATL (South Atlantic gyral). The BRAZ, GUIA, CNRY, and GUIN 
areas are coastal and might be subjected to riverine and anthropogenic influences. 

The seasonal dynamics vary spatially. To provide a baseline when no in situ observations are available, pCO2sw 
from the three models outputs used in this study were averaged per area at the monthly resolution. Figure 
4 presents the seasonal variations over 2018-2021 for each province. 

 

Figure 4. Surface pCO2sw averaged per area (± standard deviation) from Carbonsurf (Chau et al., 2022), OceanSODA (Gregor and 
Gruber, 2021), and stepCO2 (Zhong et al., 2022). 

At the surface models globally agree on pCO2sw except for the GUIN and GUIA BGCPs where larger differences 
occur. In these areas, the three models behave differently and disagree in the order of 50 to 70 µatm. This 
might be related to the coastal position of these areas with specific circulation features that receive the 
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discharge of the two largest rivers of the world (Figure 1): the Amazon near the equator in the west (GUIA), 
and the Congo near 6°S in the east (GUIN). Furthermore, the large standard deviation might be related to the 
spatial variability within each area. Most areas exhibit a seasonal cycle with varying amplitudes from one 
BGCP to the other. The seasonality is small in the central WTRA and ETRA BGCPs (20 µatm of difference 
between summer and winter). In contrast, NATR, CARB, and SATL display well-defined large amplitude 
seasonal variations (50 µatm amplitude) with low variations inside each area. Therefore, the large 
discrepancies between models might be a sign of highly dynamic areas where the models did not sufficiently 
capture the biogeochemical processes because of a lack of training observations with respect to the region’s 
dynamics. 

3.2. Sea-air CO2 fluxes 

 

Figure 5. Surface pCO2sw normalized at 26°C according to Takahashi et al. (1993) averaged per area (and standard deviation) from 
Carbonsurf (Chau et al., 2022), OceanSODA (Gregor and Gruber, 2021), and stepCO2 (Zhong et al., 2022;  same as figure 4) with in 
situ observations (Saildrone (stars), cruises (squares), Argo floats (dots), moorings (triangles)) coloured by area. Atmospheric pCO2 
from the Seaflux product (Fay et al., 2021) is averaged per area and is represented by the black markers. Note that the scale on the 

y-axis differs in each panel. 

In most areas, pCO2sw@26C from model predictions are in agreement with in situ measurements from cruises, 
BGC-Argo floats, Saildrone, and moorings except SATL, ETRA, and to some extent the GUIN BGCP. For ETRA, 
the model outputs do not reproduce the local variability captured by the mooring data from 2018 to 2020 
with sharp increases beyond the model’s ranges. The model data match the Saildrone data (stars at the end 
of 2021) which varies almost 40 µatm over a quasi-constant latitude, confirming the spatial variability, 
whereas pCO2sw@26C from Argo floats display a wide range of values. For SATL, the seasonal cycle of Argo-
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derived pCO2sw@26C presents a large offset (about 50 µatm) to model outputs with a reverse seasonal 
variation. This offset might highlight the poor performance of the neural networks used to derive pCO2sw in 
this area. Indeed, for these three BGCPs, the pCO2sw error is larger than in others and the errors are scattered 
across the vertical (over the first 2000 m, Supplementary Figure 1). This highlights the limitation of neural 
networks in specific areas where the training dataset was either too small or insufficient to adequately 
capture the biogeochemical variability in time and space. In addition, data products used in this study seem 
to smooth out local variability. This is to be expected as they were developed for the global ocean. 
Furthermore, it may be related to the fact that the mooring data are flagged ‘E’ in SOCAT, indicating they 
may be left out of the training of these data products. Atmospheric pCO2 (black error bars, Figure 5) is 
relatively stable between and within BGCPs. In GUIA, WTRA, and NTRA, a similar decrease in 2020 is visible. 
This can directly be linked with the position of the Argo floats near the Amazon river outflow (Figure 1). 

Air-sea CO2 fluxes were computed (Figure 6, as described in section 2.2) for each BGCP and with each data 
acquisition platform available. For OceanSODA, Seaflux, and Carbsurf, FCO2 was directly provided in the 
products. For Saildrone FCO2 was calculated using the pCO2atm and wind speed directly measured by the 
Saildrone (better matchup than with a model). For stepCO2, cruise data, float data, and mooring data, FCO2 
was computed using pCO2atm from Seaflux. Mirrored seasonality between NATR, CABR, and CNRY as opposed 
to SATL and BRAZ is consistent with the opposite hemispheres. Overall, most oceanic areas are CO2 sinks 
(pCO2atm higher than pCO2sw) in winter and sources in summer. However, the WTRA and ETRA are almost 
continuous CO2 sources. These areas closest to the Equator exhibit high SSTs throughout the year leading to 
CO2 outgassing. 

In GUIA and WTRA, a similar decrease from April to July 2020 is visible. This can directly be linked with the 
position of the Argo floats near the Amazon River outflow (Figure 1).  Indeed, multiple studies (Cooley et al., 
2007; Ibánhez et al., 2015; Körtzinger, 2003; Lefèvre et al., 2010, 2017; Ternon et al., 2000) have shown that 
the outflow of the Amazon River becomes a net sink of atmospheric CO2 when the waters from the 
Amazonian plume mix with the surrounding ocean (lowering SSS) and alters the air-sea equilibrium of CO2 in 
the region (Mu et al., 2021). The Amazon River plume waters are a strong net CO2 sink, being responsible for 
87% of the CO2 uptake in the western Tropical Atlantic (Monteiro et al., 2022). In detail, the sink-to-source 
behavior in this area is determined by the balance between two sets of processes (Louchard et al., 2021): the 
riverine input of AT favouring the sink and the outgassing caused by supplies of Dissolved Organic and Organic 
Carbon from the Amazon. This contrasted area has been subdivided recently by Monteiro et al. (2022) who 
identified three sub-regions: (1) a sub-region under the North Brazil Current, net source to the atmosphere, 
(2) a sub-region under the North Equatorial Current net CO2 sink and (3) the Amazon River Plume directly 
influenced by the outflow.  

The clear north-south gradient in the western tropical Atlantic near the Amazon (Lefévre et al., 2010; 
Takahashi et al., 2009) is visible in BGCPs NATR, WTRA, and GUIA with higher surface pCO2sw in the south 
than further north because of the supply of CO2 rich waters coming from below the equatorial upwelling 
(Lefèvre et al., 2014).  

In the SATL, while models agree with cruises, float-based estimates differ largely from the Carbsurf estimate 
(up to 4 mmol m-2d-1), due to the bad prediction by neural networks in the area. In the ETRA, mooring-based 
FCO2 estimates of -1 to 3 mmol m-2d-1 are consistent with previous estimates by Lefèvre et al., (2021) for 6°S 
8°E. Furthermore, in ETRA the SD measurements were restricted to one season which might explain the small 
mismatch with the other estimates.  
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Estimates for each BGCP using a different combination of platforms were attempted (Supplementary Figure 
2, Supplementary Text 1, Supplementary Table 1) but as the different datasets have different temporal 
resolutions, this comparison is marred by large errors and will not be presented more in this deliverable. 

 

 

Figure 6. Time series of CO2 fluxes (FCO2) for each BGCP. FCO2 was recalculated for cruises (orange squares), Argo floats (grey 
circles), mooring (purple triangle), and for the stepCO2 model outputs (yellow dots). For the Saildrone (blue stars), Seaflux (turquoise 

dots), oceanSODA (green dots), and Carbsurf (brown dots) FCO2 was directly provided and was not recalculated. 
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3.3. A look at anthropogenic Carbon 
Monitoring and sustained observations of surface oceanic CO2 are critical for understanding the fate of CO2 
as it penetrates the ocean. Looking at Cant allows the understanding of where this CO2 will accumulate. The 
concentration of Cant is not homogeneous over the water column as higher values are found near the surface 
where it accumulates with atmospheric exchanges. The concentration then decreases with depth. Over time 
and in correlation with the atmospheric increase in CO2, Cant also increases throughout the water column. In 
the same BGCPs as previously, Cant was derived from the 𝜑𝜑𝐶𝐶𝑇𝑇0 method (Vazquez-Rodriguez et al., 2009) 
applied on BGC-Argo floats (see details in section 2.3). To study Cant storage over the vertical, profiles were 
regularised and integrated over the first 1000 dbar (Figure 7, shallowest limiting depth reached by all floats).  

 

Figure 7. Integrated Cant (mean ± standard deviation) over the first 1000 dbar and the period 2018-2021 multiplied by the surface 
of each area derived using the φC_T^0 method, Vazquez-Rodriguez et al., (2009) on Argo floats in each BGCP. 

There is substantial anthropogenic carbon uptake in the tropical Atlantic. While a portion of this tropical 
uptake is transported southwards, most of it is either stored in the tropics or transported northwards along 
the surface before being stored in the subtropical North Atlantic (Mikaloff Fletcher et al., 2006). The largest 
Cant integrated over the period 2018-2021 occurs in the SATL (0.028 ± 0.003 Pg C) and we find the largest 
variability in GUIA (0.011 ± 0.009 Pg C) subjected to the Amazonian output. Over the 2000s, Woosley et al. 
(2016) estimated a Cant inventory of 1.97 Pg C.decade-1 while Lee et al. (2003) produced an estimate of 
10 ± 3.1 Pg C over the 20°S-20°N band more than ten times our estimate. Our Cant estimates applying the 
𝜑𝜑𝐶𝐶𝑇𝑇0 method on BGC-Argo floats are therefore not directly comparable to previous estimates as they are 
restricted to the first 1000 dbar of the water column.  

3.4. Insights into optimizing observing systems 
Numerous sensor platforms exist for directly measuring or deriving oceanic pCO2, as used in this report. A 
qualitative description of some cost-benefit information for these platforms is given in Table 1.  
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Table 1. Cost, measurement frequency, and uncertainty associated with different oceanic CO2 observing platforms  

Observing platform Cost Measurement 
frequency 

pCO2 
associated 
uncertainty 

Type of 
measurements 

CO2-equipped mooring ~50 k€ for the 
CARIOCA sensor 

Hourly <10 µatm Surface 

Saildrone ~2 k€ per day Every 30 minutes <4 µatm Surface 
Yearly cruise (PIRATA) ~650-900 €3 5 profiles (10 

depths) and 10-30 
surface 
measurements 

8-16 µatm4 Water column 

SOOP line ~80 k€ (ferrybox) + 
maintenance costs 

Every 3 minutes 2 µatm Surface 

BGC-Argo float ~50 k€ for a float 
equipped with O2 
and pH 

Every 1-10 days 5 6.5-25 µatm6 Water column 

 

Saildrones and Ships of Opportunity (SOOP lines) are among the best quality measurements for investigating 
oceanic pCO2 with the lowest uncertainties as they have onboard reference gases. However, Saildrones 
represent a large financial investment, while SOOP lines, as their name suggests, collect data with no direct 
choice of sampling season and/or trajectory. The deployment of CO2 sensors on moorings in the tropical 
Atlantic (in the PIRATA network) has allowed the acquisition of time series and the study of seasonal and 
interannual variations of surface pCO2sw (Bourlès et al., 2019; Lefèvre et al., 2013,2021). However, these 
sensors are subject to harsh weather conditions and piracy and require annual maintenance. This 
maintenance is often coupled with the annual PIRATA cruises where AT and CT are sampled for analysis. From 
these in situ bottle sampling of the carbonate system, pCO2sw can be derived (with uncertainties ranging from 
8 to 16 µatm, Table 1). There is no direct pCO2sw measurement along the research vessel track, but the 
addition of a ferry box (such as on SOOP lines) could be useful to easily extend the measurements. These 
cruises also allow the periodic sampling of the entire water column for carbonate system variables, enabling 
the study of the sequestration of CO2 after its absorption at the surface. These repeated cruises can also be 
very useful for deploying BGC-Argo floats and having in situ reference data to adjust the floats’ sensors. In 
particular, O2- and pH-equipped BGC-Argo floats combined with AT from neural network methods (e.g. 
CONTENT, Bittig et al., 2018 as in this deliverable) can allow us to obtain pCO2 at the surface and along the 
water column. 

However, the development of an OSSE (Observing System Simulation Experiment) would be required to 
comprehensively determine the optimal combination of observing platforms for the study of oceanic CO2. 
Thus, the qualitative elements of the different observing platforms mentioned above might pave the way for 
such a design, as done by Denvil-Sommer et al. (2021), who assessed the impact of the addition of Argo floats 
(with varying spatial coverage) and mooring arrays on the reconstruction of surface oceanic pCO2 in the 

                                                           

3 This represents only the cost for the AT and CT analysis. 
4 For sample analysis accuracies from 1,5 to 3 µmol/kg for AT and CT. 
5 Throughout the life of the float, this cycling frequency can be changed. On average, the new BGC-Argo floats have 
enough battery life for ~300 profiles. 
6 For a neural-network AT error of 6.2 µmol/kg (CONTENT, Bittig et al., 2018) and a float-based pH error from 0.005 to 
0.02 pH units (depending on sensor failures and quality of delayed-mode adjustments). 
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Atlantic Ocean. Their focus was on the short-term interannual variability of pCO2, which is similar to the time 
scale of the present study. Coastal regions such as our GUIN BGCP have pronounced biases in all OSSEs. This 
could be substantially improved by the addition of moorings, gliders, as well as Saildrones and sail buoys 
along the continental shelf (Denvil-Sommer et al., 2021). 

We recommend that the next step is a comprehensive OSSE, building on Denvil-Sommer et al. (2021) in terms 
of sampling locations and insights into where large pCO2 uncertainties remain in calculating air-sea CO2 fluxes. 
Therefore, an OSSE including in situ errors would explicitly help to define where to use the different 
observation platforms (Saildrones, BGC Argo floats, moorings) to best improve our coverage of the oceanic 
pCO2 system. 

Conclusion 
The tropical Atlantic is a very contrasted area that has been determined as the second largest source of CO2 
to the atmosphere (Landschützer et al., 2014). It is affected by multiple physical and biogeochemical 
processes, varying on many time scales and impacting surrounding areas (Foltz et al., 2019). Furthermore, 
this area is known to exhibit significant interannual variability of air-sea CO2 fluxes closely linked to climate 
variability (Lefèvre et al., 2013; Ibánhez et al., 2017). The tropical Atlantic observing system has progressed 
substantially over the past two decades. Still, many challenges and uncertainties remain requiring further 
studies into the area’s role in terms of carbon fluxes (Foltz et al., 2019). Monitoring and sustained 
observations of surface oceanic CO2 are critical for understanding the fate of CO2 as it penetrates the ocean 
and afterwards. 

Using a combination of multi-platform observations, models, and neural network techniques, this deliverable 
allowed us to assess our ability to derive air-sea CO2 fluxes in the tropical Atlantic over the period 2018-2021. 
This deliverable builds on the work done in EuroSea D7.1 and D7.2 which describe the observing platforms 
deployed in the tropical Atlantic as part of the EuroSea project (notably Saildrone and BGC-Argo floats) and 
the correction of their data to ensure good quality observations. However, it should be mentioned that 
further work is necessary to ensure the availability of model outputs and data products (i.e. unavailable 
updated BGCPs which would have been helpful to precise the work done in this deliverable).  

Overall, the tropical Atlantic is a source of CO2 to the atmosphere with high variability (seasonal and 
interannual) in the GUIA and GUIN BGCPs, consistent with the literature. The use of data products, while very 
useful in filling gaps, remains limited as these data products often do not adequately represent the large 
spatial and/or seasonal variability intrinsic to the area. There is still a great need for sustained observations, 
either by using vessels of opportunity that provide regular high-quality monitoring of specific areas (such as 
the France-Brazil SOOP line) or by developing specific pilot observation experiments such as the one 
implemented in EuroSea. Indeed, a Saildrone, BGC-Argo floats equipped with pH sensors have been deployed 
and collocated matchups between these platforms, moorings, and cruises have been carried out. It is also 
important to emphasize that there is only one CO2 mooring left in the area (part of the PIRATA network). It 
is difficult to maintain long-term datasets due to harsh conditions, sensor problems, and piracy. In addition, 
there is a need to further improve the ability of platforms to accurately measure the variables needed to 
estimate CO2 fluxes (e.g. acoustic wind measurements on Argo floats). It is also necessary to continue to 
improve sensor technology to provide reliable measurements over the long term. This, combined with a good 
observation strategy and QC algorithm procedures, will allow us to improve CO2 products. Saildrones provide 
high-quality data and have the advantage of onboard collocated measurements of wind speed and 
atmospheric CO2 needed to derive air-sea CO2 fluxes. However, this high-frequency dataset is not the most 
cost-effective and we should not rely solely on these types of platforms to study entire ocean basins. 
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Saildrones can be used, as it has been done in EuroSea (matchups with Argo floats and moorings), as a tool 
to link platforms. Neural networks allow gaps to be filled and provide CO2 estimates by enhancing limited 
T/S/O2 datasets with given uncertainties. When used in combination with pH sensors mounted on BGC-Argo 
floats, they help derive pCO2 with reduced uncertainties. 

We suggest that an effective and economical way to monitor the area and ensure comparisons between 
platforms, as well as providing the accurate dataset needed to improve neural network training and 
prediction, could be pilot studies with permanent 'rendezvous' between different monitoring platforms. In 
addition, an OSSE including in situ errors would explicitly help to define where to use the different 
observation platforms (Saildrones, BGC Argo floats, moorings) to best improve our coverage of the oceanic 
pCO2 system. 
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Pérez, F. F., Vázquez-Rodríguez, M., Louarn, E., Padıń, X. A., Mercier, H., and Ríos, A. F.: Temporal variability 
of the anthropogenic CO2 storage in the Irminger Sea, Biogeosciences, 5, 1669–1679, 2008, 

Reygondeau, G., Longhurst, A., Martinez, E., Beaugrand, G., Antoine, D., & Maury, O. (2013). Dynamic 
biogeochemical provinces in the global ocean. Global Biogeochemical Cycles, 27(4), 1046–1058. 
https://doi.org/10.1002/gbc.20089 

Reygondeau, G., Cheung, W. W. L., Wabnitz, C. C. C., Lam, V. W. Y., Frölicher, T., & Maury, O. (2020). Climate 
Change-Induced Emergence of Novel Biogeochemical Provinces. Frontiers in Marine Science, 7, 657. 
https://doi.org/10.3389/fmars.2020.00657 

Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.: An improved in situ and satellite 
SST analysis for climate, J. Climate, 15, 1609–1625, 
https://doi.org/10.1175/15200442(2002)015<1609:AIISAS>2.0.CO;2, 2002. 

Speich, S., Lee, T., Muller-Karger, F., Lorenzoni, L., Pascual, A., Jin, D., et al. (2019). Editorial: Oceanobs’19: An 
Ocean of Opportunity. Frontiers in Marine Science, 6. https://doi.org/10.3389/fmars.2019.00570 

Sutton, A. J. and Sabine, C. L. and Maenner-Jones, S. and Lawrence-Slavas, N. and Meinig, C. and Feely, R. A. 
and Mathis, J. T. and Musielewicz, S. and Bott, R. and McLain, P. D. and Fought, H. J. and Kozyr, A., 2014. A 
high-frequency atmospheric and seawater pCO2 data set from 14 open-ocean sites using a moored 
autonomous system. Earth System Science Data, 6 (2): 353-366. 

Takahashi T., Olafsson J., Goddard J.G. et al., “Seasonal variation of CO2 and nutrients in the high latitude 
surface oceans. A comparative study”, Global Biogeochemical Cycles, vol. 7, pp. 843–878, 1993. 

Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., et al. (2009). 
Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global 
oceans. Deep Sea Research Part II: Topical Studies in Oceanography, 56(8–10), 554–577. 
https://doi.org/10.1016/j.dsr2.2008.12.009 



 

 21 

Takahashi, T., S.C. Sutherland and A. Kozyr (2019). Global Ocean Surface Water Partial Pressure of CO2 
Database (LDEO Database Version 2019): Measurements Performed During 1957–2019 (NCEI Accession 
0160492). NOAA National Centers for Environmental Information. Dataset. 

Ternon, J. F., Oudot, C., Dessier, A., & Diverres, D. (2000). A seasonal tropical sink for atmospheric CO2 in the 
Atlantic ocean: The role of the Amazon River discharge. Marine Chemistry, 68(3), 183–201. 
https://doi.org/10.1016/S0304-4203(99)00077-8 

Touratier, F. and Goyet, C.: Applying the new TrOCA approach to estimate the distribution of anthropogenic 
CO2 in the Atlantic Ocean, J. Mar. Sys., 46, 181–197, 2004. 

Touratier, F., L. Azouzi & C. Goyet (2007). CFC-11, Δ14C and 3H tracers as a means to assess anthropogenic 
CO2 concentrations in the ocean, Tellus B: Chemical and Physical Meteorology, 59:2, 318-325 

Uppström, L. R. (1974). The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep Sea 
Research, 21, 161–162. 

van Heuven, S., D. Pierrot, J.W.B. Rae, E. Lewis, and D.W.R. Wallace, 2011. MATLAB Program Developed for 
CO2 System Calculations. ORNL/CDIAC-105b. Carbon Dioxide Information Analysis Center, Oak Ridge 
National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee. 

Vazquez-Rodrıguez, M., Touratier, F., Monaco, C. L., Waugh, D. W., Padin, X. A., Bellerby, R. G. J., et al. (2009). 
Anthropogenic carbon distributions in the Atlantic Ocean: data-based estimates from the Arctic to the 
Antarctic. Biogeosciences, 6(439–451), 13. 

von Schuckmann, K., P.-Y. Le Traon, N. Smith, A. Pascual, S. Djavidnia, P. Brasseur, M. Grégoire (Eds.) (2022). 
Copernicus Ocean State Report, Issue 6, Journal of Operational Oceanography, 15:sup1, s1–s220; DOI: 
10.1080/ 1755876X.2022.2095169 

Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean, J. Geophys. Res., 97, 
7373, https://doi.org/10.1029/92JC00188, 1992. 

Wanninkhof, R., 2014. Relationship between wind speed and gas exchange over the ocean revisited: Gas 
exchange and wind speed over the ocean. Limnology and Oceanography: Methods, 12 (69): 351-362. 

Watson, A., Lefèvre, N., Smythe, T., Hartman, S., Reverdin, G., Gonzalez-Davila, M. & Fietzek, P. (2018). 
Deliverable D2.4: SOOP Network Enhancement Report, AtlantOS – 633211 project. 

Weiss, R., 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry, 2 
(3): 203-215. 

Wimart-Rousseau, C., Fourrier, M., Fiedler, B., Cancouet, R., Claustre, H. and Coppola, L. (2022): development 
of BGC-Argo data quality validation based on an integrative multiplatform approach. EuroSea Delivrable, 
D7.2. EuroSea, 29pp. https://doi.org/10.3289/eurosea_d7.2. 

Woosley, R. J., F. J. Millero, and R. Wanninkhof (2016), Rapid anthropogenic changes in CO2 and pH in the 
Atlantic Ocean: 2003–2014, Global Biogeochem. Cycles, 30, 70–90, doi:10.1002/2015GB005248. 

Zhong, G., Li, X., Song, J., Qu, B., Wang, F., Wang, Y., et al. (2022). Reconstruction of global surface ocean CO2 
using region-specific predictors based on a stepwise FFNN regression algorithm. Biogeosciences, 19(3), 845–
859. https://doi.org/10.5194/bg-19-845-2022 



 

 22 

Zhong, G. (2021). Global surface ocean pCO2 product based on a stepwise FFNN algorithm. Marine Science 
Data Center of the Chinese Academy of Sciences (Http://Msdc.Qdio.Ac.Cn). Dataset. 
https://doi.org/10.12157/iocas.2021.0022 

  



 

 23 

Supplementary Material 
 

 

Supplementary Figure 1. Neural network-derived pCO2sw (CONTENT) and associated error over the vertical for each BGCP. 
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Supplementary Figure 2. FCO2 (mmol.m-2.d-1) averages per year and over the 2018-2021 period per BGCP. Different estimates are 
provided for each period and area using a different mix of platforms: products (dot), Saildrone (upward triangle), cruises (right-

facing triangle), floats (left-facing triangle), moorings (diamond), cruises and moorings (cross), cruises and moorings and floats (plus 
sign), cruises and moorings and floats and saildrone (square), cruises and moorings and floats and saildrone and products 

(pentagram). For each individual, the mean ± standard deviation in the area is shown whereas, for the right panels 2018-2021, the 
mean ± standard deviation of all platforms is shown. 

Supplementary Text 1 
Using each observing platform and model, the average FCO2 per year and area were calculated. Furthermore, 
different mixes of platforms were also used to calculate these fluxes (Supplementary Figure 2). The fluxes for 
each year from 2018 to 2021 were averaged. Overall, the NATR and CARB are CO2 sinks over 2018-2021 
whereas SATL, ETRA, and BRAZ are net sources. The WTRA, CNRY, GUIN, and GUIA BGCPS are close to zero 
exhibiting no distinct sink or source behavior. The large discrepancies in coverage and values between the 
different platforms might bias the overall results. For example, Saildrone estimates in the ETRA BGCPs were 
significantly lower than the other platforms, qualifying the area as a sink whereas it appears to be a source 
of CO2 and the opposite is true for Saildrone-based estimates in the NATR. 

Therefore, while providing high-accuracy local estimates of pCO2 and consequently of FCO2, Saildrone data 
cannot be used to extrapolate global behavior over a larger area. In our case, the SD measurements were 
restricted to one season which might explain the mismatch with the other estimates. Furthermore, these 
types of platforms might not be the most cost-effective way to obtain CO2 measurements. Float-based 
estimates have larger uncertainties than any of the other platforms, but can be used to densify 
measurements and strengthen area-wide estimates.  
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Estimates over the 2018-2021 period from all measurement platforms were integrated over the area of each 
BGCP in an attempt to provide an overall FCO2 value leaning towards a sink or source of CO2 to the 
atmosphere. 

Supplementary Table 1: FCO2 (mmol.m-2.d-1) averages over the 2018-2021 period per BGCP, surface 
of the BGCP, and area integrated FCO2 estimate (mmol.y-1). 

Supplementary Table 1. FCO2 (mmol.m-2.d-1) averages over the 2018-2021 period per BGCP, surface of the BGCP, and area integrated 
FCO2 estimate (mmol.y-1). 

 NATR CARB CNRY GUIA WTRA GUIN ETRA BRAZ SATL TOTAL 
2018-
2021 
estimate 
(mmol/m
²/d) 

-1.115 0.058 1.355 0.506 0.726 0.762 1.744 0.881 1.210 6.126 

Surface 
(*103 
km²) 

8,200 4,396 750 1,236 5,348 1,347 5,323 1,220 17,738 45,559 

2018-
2021 area 
integrate
d 
estimate 
(mmol/y) 

-25.053 0.698 2.786 1.713 10.638 2.813 25.432 2.942 58.815 80.784 
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