
 
 
 
 

https://doi.org/10.3289/eurosea_d4.5  

Project information 
Project full title EuroSea: Improving and Integrating European Ocean Observing 

and Forecasting Systems for Sustainable use of the Oceans 

Project acronym EuroSea 

Grant agreement number 862626 

Project start date and duration 1 November 2019, 50 months 

Project website https://www.eurosea.eu 

  

Deliverable information 
Deliverable number D4.5 

Deliverable title Synthesis of satellite validation results 

Description This report presents the results of Task 4.4: Improving the use of 
in situ observations for the long-term validation of satellite 
observations 

Work Package number WP4 

Work Package title Data integration, Assimilation, and Forecasting 

Lead beneficiary CLS 

Lead authors Sandrine Mulet (CLS) 

Contributors Sandrine Mulet (CLS), Christine Boone (CLS), Bàrbara Barceló-Llull 
(CSIC), Nikolaos Zarokanellos (SOCIB), Ananda Pascual (CSIC), Ivan 
Manso-Narvarte (AZTI), Ainhoa Caballero (AZTI), Anna Rubio 
(AZTI), Marine Bretagnon (ACRI-ST), Antoine Mangin (ACRI-ST) 

Due date 31 October 2022 

Submission date 4 November 2022 

Resubmission date 18 August 2023 

Comments  

 
This project has received funding from the European Union’s Horizon 2020 research and 

 innovation programme under grant agreement No. 862626. 

https://doi.org/10.3289/eurosea_d4.5
https://www.eurosea.eu/


 
 
 
 

 

Table of contents 
Executive summary............................................................................................................................................ 1 

Introduction to triple collocation method......................................................................................................... 1 

1. Validation of Sentinel-3 altimeter observations with SOCIB glider data in the Balearic Sea (CSIC) ......... 1 

1.1. Objective ............................................................................................................................................ 1 

1.2. Data and methods ............................................................................................................................. 2 

Sentinel-3A observations ........................................................................................................................... 2 

Glider observations ................................................................................................................................... 2 

DH and geostrophic velocity calculation ................................................................................................... 4 

1.3. Results ............................................................................................................................................... 6 

Glider DH vs. Sentinel-3A ADT ................................................................................................................... 6 

Comparison of across-track geostrophic velocities ................................................................................... 8 

Comparison of the glider-derived geostrophic velocity with the DAV .................................................... 10 

1.4. Conclusions ...................................................................................................................................... 12 

2. Validation of Sentinel-3 altimeter observations with HF radar and ADCP in the Bay of Biscay (AZTI) ... 13 

2.1. Introduction ..................................................................................................................................... 13 

2.2. Data and Methods ........................................................................................................................... 15 

Data ......................................................................................................................................................... 15 

Methods .................................................................................................................................................. 16 

2.3. Results and Discussion ..................................................................................................................... 20 

Along-Track .............................................................................................................................................. 20 

Triple Collocation ..................................................................................................................................... 21 

2.4. Conclusions ...................................................................................................................................... 23 

3. Global validation of altimetric data (Sentinel-3) with in-situ observations (CLS) ................................... 24 

3.1. Sea level anomalies validation ........................................................................................................ 24 

Introduction ............................................................................................................................................. 24 

Data ......................................................................................................................................................... 24 

Methods .................................................................................................................................................. 25 

Results ..................................................................................................................................................... 28 

Sea level anomalies conclusion ............................................................................................................... 33 

3.2. Geostrophic velocity anomalies validation ..................................................................................... 34 

Data processing ....................................................................................................................................... 34 

Triple collocation ..................................................................................................................................... 35 



 
 
 
 

1 
 

Random error standard deviation estimation ......................................................................................... 38 

3.3. Conclusions ...................................................................................................................................... 39 

4. BGC Argo array for the validation of ocean colour satellite missions, in particular S3A&B (ACRI-ST)
 ................................................................................................................................................................. 40 

4.1. Introduction ..................................................................................................................................... 40 

4.2. Data description .............................................................................................................................. 41 

Chlorophyll a in situ processing ............................................................................................................... 41 

Particulate back scattering (BBP) ............................................................................................................ 42 

Coefficient of diffuse attenuation (Kd) .................................................................................................... 43 

Matchup procedure ................................................................................................................................. 43 

4.3. Global validation .............................................................................................................................. 43 

Benefit of the BGC-Argo floats on the number of matchups .................................................................. 43 

Chlorophyll validation .............................................................................................................................. 44 

Validation of the BBP product ................................................................................................................. 46 

Validation of the coefficient of diffuse attenuation ................................................................................ 46 

4.4. Biomes analysis ................................................................................................................................ 51 

4.5. Estimate of the error ....................................................................................................................... 51 

4.6. Conclusion ....................................................................................................................................... 54 

General conclusions......................................................................................................................................... 54 

Recommendations ........................................................................................................................................... 55 

References ....................................................................................................................................................... 56 

 



 
 
 
 

1 
 

Executive summary 
This report presents the results of Task 4.4 on “Improving the use of in situ observations for the long-term 
validation of satellite observations”. 

In situ observations are essential for the calibration and validation of satellite observations. Calibration 
activities organized by satellite agencies rely on dedicated instrumentation, whereas validation activities rely 
on the global ocean observing system. Task 4.4 demonstrate the potential of emerging in-situ networks 
for satellite validation activities and there are important links with the other tasks of WP4.  

Thus, the task considers the use of Argo, gliders, HF radars and surface drifters for the validation of S3A&B 
SAR altimeter observations in terms of sea level and currents and addressing regional and global ocean. 
Besides, it focuses on the role of the BGC Argo array for the validation of ocean colour satellite missions 
(in particular S3A&B) for chlorophyll-a concentration, particulate backscattering coefficient and diffuse 
attenuation coefficient.  

Four groups are contributing to Task 4.4: CSIC, AZTI and CLS for the blue ocean and ACRI-ST for the green 
ocean. Although the four groups conduct separate activities using specific datasets in dedicated regions of 
interest, the methods used are similar. The triple collocation technique is applied to estimate the error 
associated with satellite measurement. The triple collocation analysis is a method for quantifying the random 
error standard deviation of 3 datasets of the same geophysical variable by combining the covariances 
between the datasets (Mignot et al. 2019). In addition to the triple collocation analysis, usual validation 
metrics (e.g., rms, bias, correlation) are also considered.  

Introduction to triple collocation method 
The validations performed on different data are often based, in this document, on a triple collocation method 
(TC method) to estimate the random and instrumental errors of the collocated observations based on the 
covariances between them. When too few data are available, or to obtain error bars on the TC results, a 
bootstrap method to is used. It is a statistical technique to estimate quantities about a population by 
averaging estimates from multiple small data samples. Importantly, samples are constructed by drawing 
observations from an initial full data sample one at a time and returning them to the data sample after they 
have been chosen. 

1. Validation of Sentinel-3 altimeter observations with SOCIB glider data in 
the Balearic Sea (CSIC) 

1.1. Objective 
Validate Sentinel-3A altimeter observations along track 57 with glider observations in the Balearic Sea (see 
example Figure 1).  
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Figure 1. Sea level anomaly (SLA) observed from Sentinel-3A along track 57 on 24 March 2021. 

1.2. Data and methods 

Sentinel-3A observations 
The altimetric product used for this study is the SSALTO/DUACS Near-Real-Time Level-3 sea surface height 
measured by Sentinel-3A over European Seas and distributed by the Copernicus Marine Environment 
Monitoring Service (CMEMS1). We use the 1Hz along-track data collected by S3A along the ground-track 57 
with a spatial resolution of 7 km. This product provides the unfiltered and filtered (cut-off wavelength of 40 
km2) sea level anomaly (SLA) fields. The absolute dynamic topography (ADT) is calculated from SLA 
observations plus the mean dynamic topography (MDT), also provided by this product. 

Glider observations 
Observations from a Slocum glider were obtained in the Balearic Sea (Figure 2) from the Balearic Islands 
Coastal Observing and Forecasting System (SOCIB). The glider took measurements between Mallorca and the 
Spanish peninsula along the Sentinel-3A (S3A) track 57 between 8 March 2021 and 28 May 2021 (Figure 2). 
During 81 days at sea, it covered 1156 km and sampled 1900 physical and biogeochemical profiles. The 
Slocum glider carried a suite of sensors that measured temperature, conductivity, and pressure (CTD), 
dissolved oxygen (oxygen optode), chlorophyll fluorescence and turbidity (FNLTU). The glider was 
programmed to profile from the surface up to 700 m at a nominal vertical speed of 0.18 ± 0.02 m/s and 
moved horizontally at approximately 20–24 km/day. A total of 10 glider transects along the S3A track were 
completed during the experiment. Two of these transects were conducted during S3A overpasses and have 
been used for the validation:  

                                                           

1 https://doi.org/10.48670/moi-00140 
2 https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-SL-QUID-008-032-068.pdf 

https://doi.org/10.48670/moi-00140
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• Section 3 was conducted from 22-03-2021, 20:17h to 28-03-2021, 23:33h, while S3A overpassed the 
region on 24-03-2021, 21:16h. The glider transect was sampled from south to north during 6.1 days. 

• Section 7 was conducted from 15-04-2021, 09:09h to 21-04-2021, 08:59h, while S3A overpassed the 
region on 20-04-2021, 21:16h. The glider transect was sampled from south to north during 6.0 days. 

 

Figure 2. Trajectory of the SOCIB Slocum glider that sampled the Sentinel-3A track 57 between 8 March 2021 to 28 May 2021. 

Glider observations of potential temperature and practical salinity along sections 3 and 7 were interpolated 
onto a regular two-dimensional (2D) grid with a resolution along the glider track of 4 km and a vertical 
resolution of 5 m between 10 and 690 m depth (Figure 4 and Figure 3). The original distance axis was 
calculated from the initial coordinates: (3.57ºE, 40.23ºN) for Section 3 and (3.55ºE, 40.19ºN) for Section 7. 
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Figure 3. Interpolated salinity fields from glider observations along sections 3 and 7. 

 

Figure 4. Interpolated temperature fields from glider observations along sections 3 and 7. 

DH and geostrophic velocity calculation 
With the interpolated temperature and salinity fields, we computed the dynamic height (DH) and across-
track geostrophic velocity at the upper layer (10 m) considering a reference level of no motion at 690 m. 
These fields were compared with the S3A absolute dynamic topography (ADT) and across-track surface 
absolute geostrophic velocity, respectively. The following metrics were used for the comparison: correlation 
coefficient, root-mean-square-error (RMSE) and RMSE-based score (RMSEs), defined as: 

RMSEs = 1 – [RMS(S3A_data - glider_data)/RMS(glider_data)]), 

where a RMSEs of 1 would mean equal fields, and a value of 0 different fields.  

To compare glider DH data to S3A ADT observations, we removed the mean of each field to compare 
anomalies (DHa and ADTa, respectively) and then the ADTa was linearly interpolated onto the latitude axis 
of the glider data to calculate statistics. We perform the comparison considering filtered and unfiltered fields. 
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The DH was filtered using a Loess smoother with a half-power filter cut-off of 40 km (as the cut-off 
wavelength used to filter Sentinel-3A data). 

From DH and ADT fields, we calculated the corresponding across-track geostrophic velocities. From glider 
observations, the across-track geostrophic velocity at the upper layer (10 m) was calculated as: 

𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝑔𝑔 =

𝑔𝑔
𝑓𝑓
𝜕𝜕𝜕𝜕𝜕𝜕(𝑧𝑧 = −10𝑚𝑚)

𝜕𝜕𝜕𝜕
, 

where g is gravity, f is the Coriolis parameter and x is the distance axis along the glider track from the 
southeast to the northwest (Bouffard et al., 2010). The along-track gradient of DH at the upper depth layer 
(10 m) was calculated through forward difference for the first point, backward difference for the last point 
and centered differences in the inner points. For this computation, we used the filtered DH.  

From S3A observations, the across-track absolute geostrophic velocity was calculated following the same 
procedure: 

𝑣𝑣𝑆𝑆3𝐴𝐴
𝑔𝑔 =

𝑔𝑔
𝑓𝑓
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

. 

For this study we used the filtered ADT because it is less noisy than the unfiltered field. Note that the ADT is 
calculated as SLA (S3A observations) + MDT. The impact of the MDT on the results is evaluated by calculating 
the corresponding across-track geostrophic velocity: 

𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀
𝑔𝑔 =

𝑔𝑔
𝑓𝑓
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

. 

With these definitions and considering the distance axis oriented from the southeast to the northwest of the 
track, the across-track geostrophic velocities will have a positive sign if they are oriented to the southwest, 
and a negative sign if they are oriented to the northeast. However, as currents to the northeast are typically 
considered positive and to the southwest negative, we change the sign of the velocity. With the new 
definition, the across-track velocities have a positive (negative) sign if they are oriented to the northeast 
(southwest). 

The depth-averaged velocity (DAV) derived from glider data (Figure 5) is used to evaluate the impact of the 
reference level on the calculation of DH and to quantify the presence of barotropic motions (Bouffard et al., 
2010). The DAV components are available along the zonal and meridional axes (𝜕𝜕𝜕𝜕𝐷𝐷𝑢𝑢, 𝜕𝜕𝜕𝜕𝐷𝐷𝑣𝑣). To have the 
DAV along and across the glider track, we needed to rotate the original components. To do this, we used the 
angle between the glider track and the meridional axis. This angle was calculated from the initial and final 

positions of each trajectory (𝑡𝑡𝑡𝑡𝑡𝑡(𝜃𝜃) = 𝑔𝑔𝑙𝑙𝑙𝑙𝑓𝑓−𝑔𝑔𝑙𝑙𝑙𝑙𝑖𝑖
𝑔𝑔𝑙𝑙𝑙𝑙𝑓𝑓−𝑔𝑔𝑙𝑙𝑙𝑙𝑖𝑖

)  and is -16º for section 3 and -15º for section 7. Then, we 

used the following trigonometric equations to rotate the DAV components:  

𝜕𝜕′ =  𝜕𝜕 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 +  𝑦𝑦 𝑐𝑐𝑠𝑠𝑡𝑡𝜃𝜃 

𝑦𝑦′ =  −𝜕𝜕 𝑐𝑐𝑠𝑠𝑡𝑡𝜃𝜃 +  𝑦𝑦 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃, 

where 𝜕𝜕 indicates zonal axis, 𝑦𝑦 is meridional axis, 𝜕𝜕′is the across-glider-track direction and 𝑦𝑦′  is the along-
glider-track direction. For the DAV components: 

𝜕𝜕𝜕𝜕𝐷𝐷𝑙𝑙𝑎𝑎𝑔𝑔𝑙𝑙𝑎𝑎𝑎𝑎 =  𝜕𝜕𝜕𝜕𝐷𝐷𝑢𝑢 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 +  𝜕𝜕𝜕𝜕𝐷𝐷𝑣𝑣  𝑐𝑐𝑠𝑠𝑡𝑡𝜃𝜃 
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𝜕𝜕𝜕𝜕𝐷𝐷𝑙𝑙𝑔𝑔𝑙𝑙𝑙𝑙𝑔𝑔  =  −𝜕𝜕𝜕𝜕𝐷𝐷𝑢𝑢 𝑐𝑐𝑠𝑠𝑡𝑡𝜃𝜃 +  𝜕𝜕𝜕𝜕𝐷𝐷𝑣𝑣  𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 

We compare the 𝜕𝜕𝜕𝜕𝐷𝐷𝑙𝑙𝑎𝑎𝑔𝑔𝑙𝑙𝑎𝑎𝑎𝑎 (DAV across glider track) to the geostrophic velocity component calculated from 
glider observations. 

 

Figure 5. Depth-averaged-velocity (DAV) derived from glider data along sections 3 and 7. 

1.3. Results 

Glider DH vs. Sentinel-3A ADT 
Figure 6 shows the filtered and unfiltered glider DHa and S3A ADTa along section 3. The unfiltered ADTa is 
noisier than the filtered field, but overall, there is a good correspondence between S3A and glider 
observations (Table 1). The higher differences are observed at ~40.8ºN, in a salinity front detected by glider 
data (Figure 3) but not captured by altimetry.  
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Figure 6. Filtered and unfiltered DH and ADT anomalies along section 3. The vertical yellow dotted line represents the glider position 
during the S3A overpass. 

Table 1. Statistics between the glider DH anomaly and the S3A filtered and unfiltered ADT anomaly fields along section 3. 

Glider data S3A Product Correlation 
coefficient RMSE [cm] RMSEs 

Unfiltered DHa 
Filtered ADTa 0.93 0.8 0.64 

Unfiltered ADTa 0.80 1.4 0.36 

Filtered DHa 
Filtered ADTa 0.95 0.6 0.70 

Unfiltered ADTa 0.83 1.2 0.39 
 

For section 7, the unfiltered ADTa is less noisy than in section 3, and both ADTa fields have similar patterns 
than the filtered and unfiltered DHa (Figure 7). However, there are some dissimilarities that are translated in 
higher RMSE and lower values of the correlation coefficient and RMSEs (Table 2) than in section 3 (Table 1). 
Note that in this case S3A overpassed the region of study at the end of the glider sampling, hence, there is 
more difference in time between the data sampled at the beginning of the glider sampling and the 
observations of S3A than in section 3. 
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Figure 7. Filtered and unfiltered DH and ADT anomalies along section 7. The vertical yellow dotted line represents the glider position 
during the S3A overpass. 

Table 2. Statistics between the glider DH anomaly and the S3A filtered and unfiltered ADT anomaly fields along section 7. 

Glider data S3A Product Correlation 
coefficient RMSE [cm] RMSEs 

Unfiltered DHa 
Filtered ADTa 0.85 1.4 0.49 

Unfiltered ADTa 0.74 1.8 0.36 

Filtered DHa 
Filtered ADTa 0.86 1.3 0.51 

Unfiltered ADTa 0.76 1.7 0.39 
 

Comparison of across-track geostrophic velocities 
The analysis of the across-track geostrophic velocity derived from glider vs. Sentinel-3A observations along 
section 3 shows in general a good correspondence between both fields (Figure 8). However, a significant 
difference has been observed in the salinity front detected at ~40.8ºN (Figure 3, Δs ~ 0.3). This difference has 
also been identified in the comparison of the DH and ADT anomalies in Figure 6. The correlation coefficient, 
in this case, is 0.89, the RMSE is 4.4 cm/s and the RMSEs is 0.57 (Table 3). 
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The across-track geostrophic velocity derived from the MDT is smooth and does not capture the smaller-
scale variability observed in the fields derived from DH and ADT (Figure 8). This is translated in a low 
correlation coefficient of -0.13, a higher RMSE of 12.3 cm/s and a lower RMSEs of -0.21.  

 

Figure 8. Across-track geostrophic velocity computed from glider filtered DH (solid black line), S3A filtered ADT (dashed blue line) 
and MDT (dotted-dashed magenta line) along section 3. Across-track velocities that are oriented to the northeast (southwest) have 

a positive (negative) sign. The vertical yellow dotted line represents the glider position during the S3A overpass. 

 

Table 3. Statistics between the across-track geostrophic velocity computed from glider filtered DH vs. Sentinel-3A filtered ADT and 
MDT along section 3. 

Glider data Product Correlation 
coefficient RMSE [cm/s] RMSEs 

Filtered DHa 
Filtered ADTa 0.89 4.4 0.57 

MDT -0.13 12.3 -0.21 
 

Regarding section 7, the across-track geostrophic velocity calculated from glider DH has a pattern similar to 
the velocity estimated from S3A ADT (Figure 9). However, the DH-derived velocity pattern is displaced about 
0.1º northwards along the latitude axis with respect to the ADT-derived velocity, being both velocities similar 
in the north, i.e., at the end of the glider transect, when the time of both observations is closer. These 
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temporal and spatial discrepancies impact the statistical metrics used for the comparison (Table 4): the 
correlation coefficient is 0.79, the RMSE is 9.6 cm/s and the RMSEs is 0.27.  

As in section 3, the across-track geostrophic velocity derived from the MDT is smooth and does not capture 
the smaller-scale variability observed in the velocities calculated from DH and ADT (Figure 9). This is 
translated in a low correlation coefficient of 0.40, a higher RMSE of 12.0 cm/s and a lower RMSEs of 0.09 
(Table 4).  

 

Figure 9. Across-track geostrophic velocity computed from glider filtered DH (solid black line), S3A filtered ADT (dashed blue line) 
and MDT (dotted-dashed magenta line) along section 7. Across-track velocities that are oriented to the northeast (southwest) have 

a positive (negative) sign. The vertical yellow dotted line represents the glider position during the S3A overpass. 

Table 4. Statistics between the across-track geostrophic velocity computed from glider filtered DH vs. Sentinel-3A filtered ADT and 
MDT along section 7. 

Glider data Product Correlation 
coefficient RMSE [cm/s] RMSEs 

Filtered DHa 
Filtered ADTa 0.79 9.6 0.27 

MDT 0.40 12.0 0.09 
 

Comparison of the glider-derived geostrophic velocity with the DAV 
The DAV computed from the GPS glider positioning has some correspondence with the shape of the DH-
derived geostrophic velocity for both sections (Figure 10 and Figure 11). However, there are important 
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dissimilarities, especially in the magnitude of both fields. The DH-derived geostrophic velocity has a higher 
magnitude than the DAV. Note that for the calculation of the geostrophic velocity we have assumed a 
reference level of no motion at 690 m, and this velocity is the result of the baroclinic geostrophic 
contribution. On the other hand, the DAV has a different physical content that includes ageostrophy, high 
frequency barotropic signals, cyclostrophy and inertial currents (Bouffard et al., 2010). Also, the DAV 
estimates can have an associated error of 2-3 cm/s due to the attitude sensor of the platform and the angle 
of attachment (Merckelbach et al., 2008). The correlation coefficients between both fields are 0.82 and 0.72, 
and the RMSE are 9.7 cm/s and 13.2 cm/s for sections 3 and 7, respectively (Table 5 and Table 6). 

 

Figure 10. Across-track geostrophic velocity computed from glider filtered DH (solid black line) and across-track component of the 
glider DAV (dashed green line) for section 3. 
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Figure 11. Across-track geostrophic velocity computed from glider filtered DH (solid black line) and across-track component of the 
glider DAV (dashed green line) for section 7. 

Table 5. Statistics between the across-track geostrophic velocity computed from glider filtered DH vs. the across-track component of 
the DAV for section 3. 

Correlation coefficient RMSE [cm/s] 
0.82 9.7 

 

Table 6. Statistics between the across-track geostrophic velocity computed from glider filtered DH vs. the across-track component of 
the DAV for section 7. 

Correlation coefficient RMSE [cm/s] 
0.72 13.2 

 

1.4. Conclusions 
The Sentinel-3A altimeter observations along track 57 have been validated with glider measurements 
conducted along the same track in March-April 2021. The DH calculated from glider observations shows good 
correspondence with the S3A ADT. In section 3, the correlation coefficient between filtered fields is 0.95 and 
the RMSE is 0.6 cm. The higher difference is detected in a salinity front not captured by altimetry. Along 
section 7 the two fields show higher dissimilarities related to the difference in time between observations. 
The correlation coefficient is 0.86 in this case, and the RMSE is 1.3 cm. The comparison of the across-track 
geostrophic velocities reveals similar results. In section 3 the correlation coefficient is 0.89, and the RMSE is 
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4.4 cm/s. In section 7 there is an offset between both fields of ~0.1º along the latitude axis, except at the end 
of the glider track, where the time of both observations is closer. The statistics in this case indicate a 
correlation coefficient of 0.79 and a RMSE of 9.6 cm/s. 

The glider-derived geostrophic velocity has been compared to the DAV (depth-averaged-velocity) computed 
from the GPS glider positioning. The across-track components of both fields show a similar shape, while there 
are significant differences in their magnitudes. Dissimilarities between both fields are expected because they 
represent a different physical content. While the geostrophic velocity is the result of the baroclinic 
geostrophic contribution, the DAV also includes ageostrophy, barotropic signals and inertial currents 
(Bouffard et al., 2010). In addition, the DAV estimates can have errors of 2-3 cm/s. The statistics between 
both fields reveal a correlation coefficient of ~0.7-0.8 and a RMSE of the order of 10 cm/s. 

2. Validation of Sentinel-3 altimeter observations with HF radar and ADCP in 
the Bay of Biscay (AZTI)  

2.1. Introduction 
Satellite measurements have multiple sources of errors such as errors in the orbit, range and/or the applied 
corrections. In addition, some of the errors can be amplified in coastal areas because of the degradation of 
the measurements, due to the contamination of the altimeter footprint area by the land and the inaccuracies 
in geophysical (atmospheric and tidal) corrections (Bouffard et al., 2010). Given the errors within the satellite 
measurements, coastal in-situ observations have great potential for the long-term validation of those 
measurements (Bonnefond et al., 2011). 

For instance, recent studies on the evaluation of the performance of altimetry using high-frequency (HF) 
radars, concluded that HF radars offer a way to improve the validation and accuracy of altimetry products 
for coastal areas (Chavanne and Klein, 2010; Liu et al., 2012; Pascual et al., 2015; Troupin et al., 2015; Roesler 
et al., 2013). One of the most extended approaches found in the literature to study the synergy between 
altimetry and HF radar data consists of the comparison of the total across-track currents in the along-track 
direction (e.g., Morrow et al., 2017; Troupin et al., 2015; Pascual et al., 2015).  

In the south-eastern Bay of Biscay (SE-BoB), altimeter measurements were already compared to HF radar 
measurements in terms of current velocities (Manso-Narvarte et al., 2018), observing that the best 
agreement was identified in areas and periods of high geostrophic signal with correlations up to 70%.  The 
mesoscale surface circulation in this area is strongly affected by the slope current that flows poleward in 
winter along the Spanish and French slopes (see Figure 11) and in summer it is reversed and weakened (e.g., 
Charria et al., 2013; Solabarrieta et al., 2014). At the surface, the circulation is also driven by winds (e.g., 
González et al., 2004; Solabarrieta et al., 2015) with prevailing southwesterlies in autumn and winter that 
induce a northward and eastward drift over the shelf. During spring, the wind regime changes to 
northeasterlies inducing a westward and south-westward drift, with a similar situation during summer. 
However, weak, and variable winds make wind-driven currents more uncertain in spring and summer, 
challenging the correct combination with altimetry data. Also, in general (and despite the season), over the 
shelf, wind-driven currents prevail over tidal or density-driven currents in this area, due to the narrow shelves 
and the low influence of rivers that induce significant density currents (e.g., González et al., 2004; OSPAR, 
2000). In Manso-Narvarte et al. (2018), the highest correlations and lowest errors were observed within the 
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slope and for winter periods for the track 248 of the Jason-2 mission, due to the intense and persistent 
geostrophic signal of the slope current (see Figure 12a). Mesoscale eddies also provided a good qualitative 
agreement (see Figure 12b).  

The current availability of the HF radar and moored ADCP observations and a higher number and wider 
coverage of altimetry observations in the area enables further analysis of the agreement between altimeter-
derived and in-situ currents. Therefore, this contribution consists in identifying the most appropriate 
conditions for comparing along-track altimetry-derived currents with HF radars measurements and in 
quantifying the measurement errors of altimetry, HF radar and ADCP-derived currents by means of the Triple 
Collocation (TC) method. To this end, data from Sentinel 3A (S3A) and Sentinel 3B (S3B) satellites were 
compared with HF radar and moored ADCP data. 

 

Figure 11. (a) Location of the study area. (b) Surface currents and kinetic energy per unit of mass (in m2·s-2) for winter from HF 
radar observations (Caballero et al., 2020). 

 

Figure 12. Figure extracted from Manso-Narvarte et al. (2018). (a) Correlation and root mean square difference (RMSD) between 
altimetry-derived and HF radar-derived currents along Jason-2 track 248 from the coast towards the open ocean for two different 
altimetry products (in red and blue). The grey-coloured area corresponds to the slope between the 200 and 1000 isobaths. (b) The 

dots show the points of track 248. SLA values are indicated in the colour scale. Black arrows depict the HFR current fields. Red 
arrows correspond to across-track altimetry-derived currents. Grey lines: 200, 1000, and 2000m isobaths. Note that the scale of 

each kind of arrow is not the same. 

(a) (b) 

(a) 

(b) 
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2.2. Data and Methods 

Data 
On the one hand, the in-situ data used as a reference for validating the satellite measurements are HF radar 
and ADCP data from the Basque Operational Oceanography System (EuskOOS3,Figure 13). The HF radar 
system is composed of two sites, one in Cape Higher and another one in Cape Matxitxako and works at a 
central frequency of 4.46 MHz with an operational bandwidth of 30 kHz. It provides hourly surface current 
velocity fields grided onto a regular orthogonal mesh of 5 km resolution covering ~150 km off the coast 
(displayed in Figure 13). This system has provided data since 2009 with some interruptions mostly due to 
severe atmospheric conditions and its validity to study coastal processes and transport patterns has been 
widely demonstrated (e.g., Rubio et al., 2011, 2018; Solabarrieta et al., 2014, 2015, 2016). In order to perform 
the comparisons against altimetry data, the biggest spatial coverage possible is needed, therefore spatially 
gap-filled currents were used, filled by an open-mode analysis (OMA) (Kaplan and Lekien, 2007), which is a 
widely used method for filling gaps in HF radar current fields. The ADCP is co-located at the Donostia mooring, 
anchored in a water depth of 550 m at the Spanish slope (at 43.56°N−2.03°W, red point in Figure 13) and 
works at a central frequency of 150 kHz providing hourly current velocity data from −12.26 m extending down 
200 m in the water column with bins every 8 meters, since 2007. However, in this study, only the data of the 
first bin, at −12.26 m, is going to be considered. The performance of the ADCP has been demonstrated in 
several works (e.g., Rubio et al., 2013a; Solabarrieta et al., 2016, 2014). 

Wind data, used as input in the Ekman model (see Section 2.2), were obtained from the Weather Research 
and Forecasting model (WRF4) provided by the meteorological agency of Galicia (MeteoGalicia). This model, 
with a native resolution of 12 km, reproduces the offshore wind fields of the SE-BoB with reasonable accuracy 
(Ferrer et al., 2010). 

On the other hand, details of the S3A&B altimetry sea level anomaly (SLA) data selected for the validation, 
are shown in  Figure 13 and Table 7. These data were extracted from the reprocessed 
SEALEVEL_GLO_PHY_L3_MY_008_062 product of CMEMS. 

                                                           

3 https://www.euskoos.eus/en/ 
4 http://mandeo.meteogalicia.es/thredds/catalog/modelos/WRF_HIST/d02/catalog.html 

https://www.euskoos.eus/en/
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Figure 13. HF radar system (antennas represented by the triangles, the regular grid used for OMA currents represented by the grey 
dots) and ADCP (red square) location in the study area. Tracks 102, 216, 257 and 371 of S3A (green) and S3B (magenta). 

Table 7. Attributes of the altimetry data used. 

Altimeter Period Tracks Spatial resolution Revisit period 

Sentinel 3A 
From 16-03-2016 
to 08-12-2020 

102, 216, 257 and 
371 

7 km 27 days 

Sentinel 3B 
From 20-12-2018 
to 18-12-2020 

102, 216, 257 and 
371 

 

Finally, mean dynamic topography (MDT) data were obtained from the COMBAT project (Caballero et al., 
2020), which was improved by the inclusion of EusKOOS HF radar data in the MDT computation for the study 
area. These data were used to obtain absolute dynamic topography (ADT) data from the summation with SLA 
data. 

Methods 
The currents observed by in-situ platforms and the ones derived from altimetry capture different 
components of the flow. The altimetry-derived currents measure the geostrophic component, whereas the 
others measure both the geostrophic and ageostrophic components of the current. Therefore, data were 
processed making them closer to each other for the comparisons. In order to remove the HF and ageostrophic 
signals contained in the in-situ data, such datasets were low pass (LP) filtered. To that end, different filters 
were tested to find out the one that provides the best results as was done in the study area in Manso-
Narvarte et al. (2018). The sensitivity tests showed that the 2-day running average filter provided the best 
agreement between altimetry and in-situ derived currents (not shown). Currents derived from the HF radar 
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were interpolated to the altimetry along-track points and rotated in across-track direction, while the ADCP-
derived ones were also rotated. 

The altimetry-derived across-track currents (𝐷𝐷𝑔𝑔) were obtained by finite-differentiating the ADT (obtained by 
the summation of the SLA and MDT). More precisely, such currents were computed by the geostrophic 
velocity equation using a three-point central difference operator: 

𝐷𝐷𝑔𝑔 =
𝑔𝑔
𝑓𝑓
∆(𝜕𝜕𝜕𝜕𝜕𝜕)
∆𝜕𝜕

 

where 𝑔𝑔  is the acceleration of gravity, 𝑓𝑓 is the Coriolis parameter and 𝜕𝜕 is the along-track distance. In order 
to obtain a similar spatial smoothing to that of the currents obtained from in-situ observations and reduce 
the noise provided by finite differentiating, the altimetry-derived currents were spatially averaged along-
track with their 4 adjacent points. This spatial window provided the best results in Manso-Narvarte et al. 
(2018), where the spatial resolution of the altimeter data was the same as in this case. 

In order to make altimetry-derived currents closer to in-situ LP filtered current data, the low-frequency wind-
driven Ekman currents were added to the altimetry-derived ones as in Liu et al. (2012) and Manso-Narvarte 
et al. (2018). Ekman currents were obtained following the M1 model proposed by Rio and Hernandez (2003) 
that previously provided good results in the study area (Caballero et al. 2008, Manso-Narvarte et al. 2018). 
Once the Ekman currents were estimated they were LP filtered as the in-situ data to obtain the same low-
frequency signal and then interpolated to the altimetry-derived current points and rotated in across-track 
direction. Note that sensitivity tests using and not-using Ekman currents were carried out (compare the 
results in Table 9 and Table 10) with a better agreement when they were used, as observed in previous 
studies (Liu et al., 2012; Manso-Narvarte et al., 2018). 

In summary, 2-day LP filtered currents derived from in-situ observations were compared to altimetry-derived 
+ LP filtered Ekman currents (hereinafter altimetry+Ekman). Table 8 shows the different data sources, their 
processing and the final variables used. These variables were compared by different approaches explained 
in the following subsections. 

Table 8. Summary of the data sources, the processing of the data and the final variables used. *Ekman, HF radar and ADCP currents 
were LP filtered to remove most of the ageostrophic signal. 

Source Processing Final variable used 
Used in the triple 
collocation (TC) and/or 
Along-track method (AT) 

Reprocessed SLA along 
the tracks of S3A&B 
(SEALEVEL_GLO_PHY_L
3_MY_008_062 
product) 

Geostrophic across-
track currents 

Across-track 
geostrophic + Ekman* 
currents along the 
track’s points 

(quantity already used 
in Liu et al. (2012) and 

TC and AT 

MDT from Combat 
project that assimilated 
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Source Processing Final variable used 
Used in the triple 
collocation (TC) and/or 
Along-track method (AT) 

HF radar data 
(Caballero et al., 2020) 

Manso-Narvarte et al. 
(2018)) 

Wind data from 
Meteogalicia 

Ekman currents 
interpolated to the 
altimetry along-track 
points and rotated in 
across-track direction 

HF radar surface total 
current fields 

Currents interpolated 
to the altimetry along-
track points and 
rotated in across-track 
direction 

Across-track currents* 
along the track’s points 

TC and AT 

ADCP total currents of 
the first bin (-12.26 m) 

Currents rotated in 
across-track direction 

Across-track currents* 
at the mooring location 

TC 

 

Along-Track 
This approach compares the altimetry-derived and HF radar-derived across-track currents along S3A&B 
tracks by means of correlation (significance of 90%), root mean square difference (RMSD) and RMSD relative 
(RRMSD) to HF radar’s root mean square (RMS, see Figure 14). The number of simultaneous HF radar and 
altimetry-derived current data pairs used in the comparisons changes depending on the along-track point, 
ranging between 33 and 46 for S3A and 14 and 18 for S3B. The study area was split into 4 different zones of 
different dynamical characteristics in order to analyse the sensitivity of the comparisons for different 
scenarios (see Figure 14): 

• Zone 1: Spanish slope area affected by the slope current (intense RMS and mean KE values, see  
Figure 11b and Figure 14). 

• Zone 2: Open ocean. 
• Zone 3: French platform where currents are mainly driven by winds and tides. 
• Zone 4: French slope area affected by the slope current (but with less intensity than in Zone 1). 
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Figure 14. The RMS at the S3A&B altimeter tracks, estimated from 2-day running averaged HF radar observations. The area is split 
into 4 zones of different dynamics. 

Triple Collocation 
The triple Collocation (TC) quantifies the random error (hereinafter RMSE or 𝜀𝜀𝑔𝑔) of three datasets of the same 
geophysical variable by combining the covariances between them (e.g., Mignot et al., 2019). Moreover, if 
one data set is assumed to be perfectly calibrated, the TC can provide the additive (hereinafter offset or 𝛼𝛼𝑔𝑔) 
and multiplicative (hereinafter gain or 𝛽𝛽𝑔𝑔) instrumental biases of the two other datasets and the RMSE 
rescaled (rRMSE) to the data space of the dataset assumed as perfectly calibrated (in order to compare the 
3 platforms at the same level). The error model is as follows: 

𝑑𝑑𝑔𝑔 = 𝛼𝛼𝑔𝑔 + 𝛽𝛽𝑔𝑔𝑡𝑡 + 𝜀𝜀𝑔𝑔  

where 𝑑𝑑𝑔𝑔  are the three collocated datasets (𝑠𝑠=1, 2, 3) and 𝑡𝑡 is the unknown true value. 

To apply the method, simultaneous altimetry+Ekman and HF radar-derived across-track velocities in the 
points inside black circles (Figure 15) and ADCP-derived currents at the ADCP location (red point in Figure 15) 
were gathered as data triplets. Note that the two different points highlighted by black circles were in areas 
of very similar dynamics and were jointly considered for increasing the number of triplets. However, since 
still only 51 simultaneous data triplets were obtained (few for estimating robust covariances) 1,000 bootstrap 
simulations were run (as in Mignot et al., 2019) and mean RMSE, rRMSE, gain and offsets were obtained 
assuming that the measurements of the ADCP were perfectly calibrated (since it is the platform that provides 
the most in-situ measurements).  
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Figure 15. Points of tracks 257 and 216 of S3A (green). ADCP location (red point). The altimetry points used for the TC are depicted 
inside black circles. 

2.3. Results and Discussion 

Along-Track 
First, if we compare the results using (i.e., altimetry+Ekman) and not-using Ekman (i.e., altimetry) we observe 
that the addition of the Ekman currents improves the results (compare the results in the general case in Table 
9 and Table 10). The correlation increases by 19% whereas the RMSD and RRMSD slightly decrease. This 
effect was already observed in the study area where an increase in the correlation of up to 10% was obtained 
(Manso-Narvarte et al., 2018). Since the along-track comparison covers a wide area and the addition of 
Ekman currents improves the results, the altimetry+Ekman dataset was used in all the following comparisons 
of this study.  

By using the along-track method for the validation, different results were obtained depending on the 
geographical area (Table 10 and Figure 16). In zone 1, strongly affected by the slope current, high correlations 
and relatively low RRMSDs were obtained. This behaviour was already observed in the study area by Manso-
Narvarte et al. (2018), obtaining similar maximum correlation values. In zone 2, where the geostrophic signal 
is lower than in zone 1, medium correlations and RRMSDs were observed. However, for the track 257 of S3B 
high correlations and low RRMSDs were obtained (points inside the black circle in Figure 16) where an intense 
current regime was observed (see Figure 16). In zone 3, an area of low geostrophic signal, correlations and 
RRMSDs were low and high, respectively. Finally, in zone 4, very low correlations and high RRMSDs were 
observed. This is somehow surprising since this is an area potentially affected by the slope current where a 
good agreement was observed in a previous study (Manso-Narvarte et al., 2018; see Figure 12). This 
unexpected result might be because the altimeter tracks did not sample the places or dates where the core 
of the slope current was flowing as shown by the weak RMS values observed by the HF radar (Figure 14). 
Note that the pointwise correlations shown in the maps and the correlations shown in the table for each 
zone might be derived from a slightly different number of data since the zonal results of the table comprise 
all the data of the points of each zone that might be discarded in the maps due to low significance. 

In general, the goodness of the results shows a marked sensitivity to the dynamics of the area, that is, the 
persistence of the currents and the strength of the geostrophic component provide better results. This 
behaviour was already observed in the study area (Manso-Narvarte et al., 2018), and in this study the wider 
spatial coverage corroborates it. Therefore, when comparing or validating altimetry-derived currents with HF 
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radar-derived currents the dynamics of the area should be considered, and periods or areas of a strong 
geostrophic signal are recommended. 

Table 9. Correlation, RMSD and RRMSD between altimetry and HF radar-derived currents along S3 A&B tracks. 

 RMSD (cm/s) RRMSD Correlation 

General 9.34 1.00 0.32 

 

Table 10. Correlation, RMSD and RRMSD between altimetry+Ekman and HF radar-derived currents along S3 A&B tracks for 4 different 
zones. 

f RMSD (cm/s) RRMSD Correlation 

Zone 1 8.99 0.70 0.68 

Zone 2 9.28 1.04 0.46 

Zone 3 7.96 1.29 0.37 

Zone 4 9.79 1.61 0.17 

General 8.91 0.95 0.51 

 

 

Figure 16. Correlation, RMSD and RRMSD between altimetry+Ekman and HF radar-derived currents along S3A&B tracks in the SE-
BoB. The study area is split into 4 zones of different dynamics. 

Triple Collocation 
As stated before, the TC method allows estimating the random and instrumental errors of the collocated 
observations based on the covariances between them. Despite quality controlling the data, given the very 
low covariances between altimetry+Ekman and ADCP observations in some of the bootstrap simulations, 
mean RMSE, gain and offset values of the HF radar were very high, providing a high standard deviation (STD) 
of the mean values that made them not representative. In order to avoid the effects of those outlying values, 
the iterations where data triplets provided covariances between altimetry+Ekman and ADCP under a 
threshold value were repeated. This threshold value was set as a compromise between considering a high 
number of times each of the 51 triplets (over 800 times out of 1000 iterations) and providing lower STD 
values than the mean values of the errors, making those mean values representative (as can be seen in Table 
11). 
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Once this modification was made, the results show that the ADCP has a mean RMSE of 3.4 cm/s, whereas the 
altimetry+Ekman provides slightly higher values when rescaled to the ADCP data space, suggesting that both 
datasets are equally precise in terms of random error. The HF radar provides even lower rRMSE values of 
1.13 cm/s and therefore a higher precision (see Table 11). With respect to the range of each dataset, these 
values represent a relative random error of 14.5%, 7.6% and 13.2% for ADCP, HF radar and altim+Ekman, 
respectively. The altimetry+Ekman tend to overestimate the currents (Figure 17a), whereas the HF radar tend 
to underestimate them (Figure 17b), with respect to the ADCP.  

Concerning the mean gains and offsets, the ADCP and HF radar differ with a gain of 1.49 and an offset of -
0.96 cm/s, but less than between ADCP and altimetry+Ekman with a gain of 1.98 and an offset of 3.85 cm/s. 
Therefore, as expected altimetry+Ekman performs worse than the HF radar in estimating the velocities with 
respect to the ADCP in terms of instrumental error. 

Table 11. TC estimates of gain, offset, RMSE, and Rescaled RMSE (rRMSE) for the ADCP, HF radar and altimetry+Ekman datasets. Note 
that the mean and standard deviation (given in parentheses) of the 1,000 bootstrap estimates are shown for each estimate, except 
for the gains and offsets of the ADCP, which is considered as perfectly calibrated. Because of this, the rescaled RMSE is rescaled to the 
ADCP data space. 

 ADCP HF radar altim+Ekman 

<Gain> 1 1.49(0.19) 1.98(0.37) 

<Offset> (cm/s) 0 -0.96(0.74) 3.85(1.55) 

<RMSE> (cm/s) 3.40(0.53) 1.69(0.75) 6.67(1.19) 

<rRMSE> (cm/s)  1.13(0.47) 3.49(0.90) 
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Figure 17. Scatter plots of (a) altimetry+Ekman and (b) HF radar currents as a function of ADCP data. Blue line represents line y=x. The 
green line is the linear regression between the two datasets. 

2.4. Conclusions 
In order to detect the most appropriate conditions for comparing altimetry data against in-situ HF radar and 
ADCP measurements for validation exercises of altimeters and to quantify the measurement errors, after the 
processing of the datasets, two approaches were used. Concerning the along-track comparison of the 
currents, it was observed that the dynamics of the area should be considered and that isolating, for the 
comparison, periods or areas of a strong geostrophic signal is recommended. With regard to the TC, a similar 
precision was observed for the ADCP and the altimeter in terms of random error (around 3.45 cm/s) whereas 
the altimeter measurements differed from the ADCP in terms of instrumental error with a gain (i.e., 
multiplicative error) of 1.98 and an offset (i.e., additive error) of 3.85 cm/s. It was also observed that the 
addition of the Ekman currents into the analysis improved the agreement between in-situ and altimetry-
derived currents, as in previous studies. This suggests that the sensitivity to the addition of the wind effects 
should be considered in future altimeter validation comparisons, at least in terms of current velocities. 

(a) 

(b) 

altim+Ekman=ADCP·1.98+3.85 

HF radar=ADCP·1.49-0.96 

y=x 

y=x 



 
 
 
 

24 
 

3. Global validation of altimetric data (Sentinel-3) with in-situ observations 
(CLS) 

3.1. Sea level anomalies validation 

Introduction 
The main objective of this sub-task is to validate altimetry data, here along track Sentinel3B (S3B) SAR 
altimeter observations in terms of sea level and current using two global ocean observing systems: Argo and 
surface drifters. The triple collocation analysis (TCA) will be applied to estimate the random error associated 
with the altimeter measurement. In addition to the triple collocation analysis, usual validation metrics 
(e.g. rms, bias, correlation) will be also retrieved. The study will be performed at a global scale for the open 
ocean, as well as on a regional scale.  

TCA is a method for quantifying the standard deviation of the random error of 3 datasets of the same 
geophysical variable by combining the covariances between the datasets (Mignot et al. 2019). The first 
output of the study will be the observational errors (=systematic error (bias/offset) + random error) 
associated to each of the 3 datasets. The second output will take the form of recommendations for the 
design of the in-situ observing system for the validation of satellite altimetry & observational error 
analysis.   

The following datasets for sea level and currents will be used:   

• In-situ: Argo, surface drifters (acting as the reference)  
• Along-track altimetry: S3B 
• Altimeter L4 products: C3S mapped sea level anomalies (specific L4 maps, without S3B)  

The tasks to be carried out include:  

• Set up of the method  
• Sensitivity analysis:   

o Using different L4 products (L4 satellite, model outputs)  
o Using different configuration of the in-situ observing system (Argo/2, drifters/2)  

• Analysis over at least one year (2019 or 2020) + seasonal cycle  
• Analysis at global scale for the open ocean + the North Atlantic Ocean, Balearic Sea and South 

East Bay of Biscay  

Data 

In situ data 
We use the temperature and salinity profiles from Argo floats and delivered by the INSitu Thematic Assembly 
Center (INSTAC) of the Copernicus Marine Service. From these profiles, we calculate the dynamic height 
referenced to 900m. Then we subtract a 2003-2019 synthetic reference climatology. 
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Combined gridded sea level anomalies 
We use the climatic time series of Sea Level Anomaly gridded Maps (MSLA) computed by the Copernicus 
Climate Change Service (C3S5) and distributed by the Copernicus Marine Service6. These maps are computed 
using only 2 satellites, over our time period of study (2019-2020) the maps used Jason-3 (J3) and Sentinel-3A 
(S3A) data, thus Sentinel-3B (S3B) is an independent dataset. The anomaly in this dataset is referenced to the 
1993-2012 period. 

Along-track sea level anomalies from altimeters 
We use the along-track sea level anomalies (SLA) from the S3B satellite computed by the Copernicus Marine 
Service Sea Level Thematic Assembly Center (SLTAC). There are used as an independent dataset from the 
dynamic height and from the gridded C3S product. The SLA is re-referenced to the same period as the 
dynamic height. 

In order to see the impact of the SLA, three processing-level steps of S3B will be considered here: 

• L2P: These SLA are not corrected for the orbit error and long wavelength error. 
• L3: level 3 data corrected for the orbit error and long wavelength error (Hereafter L3U) 
• Filtered L3: level 3 data corrected for the orbit error, long wavelength error and filtered (Hereafter 

L3F) 

Temporal mean of MSLA 
Some ancillary data are used in order to reference all the data sets over the same time period. A mean sea-
level anomaly over 2003-2019 is calculated from the MSLA maps to subtract from the gridded and along-
track data such that the anomalies are referenced to the same time period as the Argo (i.e. 2003-2019). 

Methods 
The following methods are applied on pre-selected data, chosen within 75% of the ocean scales in space and 
time (from Figure 19) such that each matchup from the datasets should be representing a similar signal. The 
75% limit was chosen as an equilibrium with enough collocated data and best signal representation. 

In order to evaluate the altimetric performances using in-situ data, we use different metrics: 

Absolute difference mean error from three datasets 
The error estimation is based on: 

Mean (1/3 (|X-Y| + |X-Z| + |Z-Y|)) per grid cell.  

Where X represents the dynamic height anomaly from in situ profiles dataset, Y the along track sea level 
anomaly from S3B and Z the gridded C3S altimetric sea level anomaly. 

Triple collocation analysis 
The TCA as describe in (Janssen, 2007) is a method to quantify the random error standard deviation RMSE 
using the covariances of three independent datasets (thus assuming they have uncorrelated random error). 
The systematic errors are supposed eliminated via data quality control. 

The three different datasets need to be collocated.  

                                                           

5 https://climate.copernicus.eu/ 
6 https://doi.org/10.48670/moi-00145 

https://climate.copernicus.eu/
https://doi.org/10.48670/moi-00145
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• Argo Insitu dynamic height estimated from the temperature and salinity profiles (reference depth is 
900m here). 

• MSLA are interpolated on in-situ locations 
• Along track, SLA are nearest neighbours (time and space) of in-situ locations using KDTree with data 

“non-dimensionalized” by the ocean scales (see 4.2). Here we start with 1 degree in longitude, and 
latitude, and 6 days in time, and then it is refined later.  

Thus, we have 3 collocated datasets. 

The method is very sensitive to outliers, thus data lower or larger than 1.5 times the first and last quarters 
are eliminated, see (Tukey, 1977) as referenced in (Mignot et al, 2019).  

The in-situ data are assumed perfectly calibrated, with quality control indicators QC = 1 (good) taken for 
temperature and salinity. 

If the amount of data is deemed insufficient for robust covariance estimation, or extra statistics are needed, 
a bootstrapping method can be used to assess the impact of the number of available data. 

Oceanic correlation scales and oceanic signal variance impact 
The selection of matchups from the 3 different datasets is based on the oceanic time and space scales to 
ensure that the data from the matchups observes the same phenomenon. Also, in areas of large oceanic 
signal variance, a slight difference in time and space between the data from a matchup can involve huge 
differences. For example, in Figure 18, one can see for the L3U along-track data (center picture), that the 
random error from the TCA analysis increases when data are farther away, and when the signal variance 
increase. It also shows on the density and repartition of the matchups over the globe. The left and right 
center pictures are from less processed (L2P) to better processed (L3F) along track data. Note that the better 
processed data have a lower random error than the less processed data since a better adjustment between 
the three independent dataset (dynamic height, along track and gridded data) are in better agreement. 

The time and space ocean correlation scales from DUACS (see Figure 18) are used to determine the 
“closeness” of the ARGO/S3B pair. Pairs are formed within a generic 1-degree longitude by 1-degree latitude 
by 6-day.  Then selected pairs are refined locally with the time and space distances allowed to form a pair 
within 75% of the correlation scales, to ensure that the pair represents a large part of the same oceanic signal. 



 
 
 
 

27 
 

 

Figure 18. Impact of the spatial distance and/or the signal variance on the number of selected matchups and RMSE output from the 
TCA. The arrows show the geographical location of the data used for calculation in the cell from the central plot from which the 

arrow starts. 

a) 

 

b) 

 
c) 

 

d) 

 
Figure 19. DUACS 2021 correlation (a) zonal, (b) meridional and (c) temporal ocean scales. (d) Oceanic signal variance from DUACS-

2018 
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Results 

Absolute difference mean error from three datasets 
From the collocated data the error is estimated based on: 

Mean (1/3 (|X-Y| + |X-Z| + |Z-Y|)) per grid cell. Where X represents the dynamic height anomaly from in situ 
profiles dataset, Y the along track sea level anomaly from S3B and Z the gridded C3S altimetric sea level 
anomaly. 

Global mean error = 3.73 cm (best full processing)                          Error is 73% of the signal standard deviation 

 
 

Global mean error = 4.20 cm                                                               Error is 85% of the signal standard deviation 

 
Figure 20. Mean error from the combination of 3 dataset: Dynamic height anomalies, gridded combined C3S sea level anomalies, 

and different along-track sea level anomalies: top) L3F best, bot) L2P least corrected. 

One can see from Figure 20 that the L2P is improved by the L3F processing. The global error drops from 4.2cm 
to 3.73 cm, and the ratio error to signal drops from 85 to 73%. The error in high variability region also includes 
the representativity with a slight difference in time/space location of the collocated data can lead to a large 
difference in the value (for example one data set measuring inside and eddy and another dataset just the 
outside of an eddy), thereby increasing the error. However, when compared with signal standard deviation 
(square root of the variance), the error represents less than 50 per cent of the signal in the Gulf Stream, 
Kuroshio, Antarctic circumpolar current, and Agulhas current. 

Triple collocation analysis and along-track random error 
The triple collocation analysis is described in §3.2.2. To check the method, two versions of along-track S3B 
data are considered. In the first case (L2P), the data used contains an error due to a correction not applied 
correctly (it has been corrected since then). The second case is the best-qualified level 3 product: The L2P 
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corrected by DUACS (orbit correction, long wavelength error correction). The TCA applied for the sets 
dynamic heights, gridded combined sea level anomalies and either 1) S3B-L2P or 2) S3B-L3F along track data. 
The selected data are chosen within 75% of the ocean scales in space and time (from Figure 19) such that 
each matchup from the datasets should be representing a similar signal. The 75% limit was chosen as an 
equilibrium with enough collocated data and best signal representation. 

If the TCA is applied over the globe, the results over the 211950 matchups (after removal of the 21882 
outliers) are presented Table 12. 

Table 12. TCA results when applied over the whole globe. Values in parenthesis are the standard deviation (cm) obtained from the 
bootstraps estimates. 

TCA parameters Dynamic height 
anomalies from insitu 

Along track sea level 
anomaly for S3B, with 
L3F processing 

Gridded C3S sea level 
anomalies 

Gain 1.0 1.267 (0.004) 1.354 (0.004) 
Offset (cm) 0 0.941 (0.013) 0.764 (0.011) 
RMSE (cm) 2.960 (0.007) 3.602 (0.014) 1.742 (0.018) 
RRMSE (cm) - 2.841 (0.016) 1.286 (0.015) 
Correlation with 
unknown truth 

0.820 (0.001) 0.830 (0.001) 0.957 (0.001) 

 

Over the globe, the rescaled random error from the filtered (L2P) along track S3B satellite is 2.84 +/- 0.04 cm 
in the rescaled dynamic height data space (if assumed perfectly calibrated) and is of the same order as the 
RMSE from the height anomalies (2.96cm) showing an equally precise random error. C3S however has a 
slightly lower random error with and RRMSE 1.29 cm. 

Now it would be interesting to estimate how this error might be spread geographically. The TCA is now 
applied on a 10 by 10 degree grid. The grid cells containing less than 10 matchups or where the mean (RMSE) 
< 3 *std (RMSE) are not taken into account because of poor representativeness and unreliable statistics. The 
standard variation to the RMSE is obtained from bootstrap estimates (method applied here on 100 replicates 
per each grid cell to enable statistics). If the bootstrapped sample mean of the RMSEs per grid cell is less than 
the error (3*std (RMSE) per grid cell) then the results are not reliable because there is too much variability 
between the bootstraps outputs. On average 600 matchups per grid points are used for the TCA (see Figure 
21) and 23 matchups discarded on average (Figure 22) 
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Figure 21. Number of matchups per cells used for TCA. 

 

Figure 22. Number of matchups containing at least one outlier. These matchups will not be used in TCA (a mean of ~4 % of the input 
matchups are removed per cell) 

Results on in-situ dynamic heights 
The results shown below are the results with the three datasets: dynamic heights anomalies referenced at 
900 meters, S3B L3 Filtered (best) along track sea level anomalies, and gridded C3S level anomalies. 

 

Figure 23. Random error results (RMSE) of the in-situ dynamic heights on a 10x10 degree grid. Results are in cm. Mean RMSE=2.75 
cm. 
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Figure 24. ratio of the in-situ dynamic height random errors (as in Figure 23) and the standard deviation of the oceanic signal (Figure 
19d) in percent. The mean percentage is 55.5%. 

The random error (RMSE) obtained from the TCA is 2.75 cm over the globe (Figure 23) and shows the highest 
error in the strong oceanic currents (RMSE above 5 cm). The ratio of the HDYN RMSE with respect to the 
oceanic signal is 55.5% on average over the globe, with very large values around the equator (see Figure 24). 
In all the strong current (where the highest errors lie see Figure 23), this ratio drops dramatically. 

The correlation as defined by McColl et al, 2014 between the dynamic height anomalies and the unknown 
truth is globally good with a global mean of 0.8 (Figure 25). 

 

Figure 25. Correlation between the dynamic height anomalies from in situ profiles and the unknown truth. The global mean 
correlation is 0.8. 

Results on along-track error estimations and impact of the processing 
The results shown below are the results with the three datasets: dynamic heights anomalies referenced at 
900 meters, gridded C3S level anomalies, and along-track S3B sea level anomalies. 

To quantify the impact of the added processing on the S3B along-track data starting from L2P data to L3 
unfiltered (hereafter L3U) to L3 Filtered (best hereafter L3F), the random error on the along-track data are 
displayed on a 10x10 degree map on Figure 26. The S3B random error varies from 3.62cm (L2P) to 3.19cm 
(L3U) to reach 2.84cm for the best processing (L3F Figure 26, top). Thus, processing from L2P to L3F lowers 
the error by 0.78cm (27.5%) (Figure 26, bottom) and processing from L3U to L3F lowers the error by 0.35 cm 
(12.3%) (see Figure 26, center).  
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The correlation between the along track S3B dataset and the unknown truth increases from 0.75 to 0.83 after 
DUACS processing (see difference between Figure 27 S3B-L2P (bot) and S3B-L3F (top)). 

 

 

 

Figure 26. Result on along-track random error (RMSE) in cm from TCA using in-situ dynamic heights, C3S gridded altimetric sea level 
anomalies and along track S3B sea level anomaly of difference quality. Top: best quality (L3F), RMSE=2.84cm. middle: RMSE 

difference between medium L3U and best L3F quality, (global difference of 0.35cm) and bottom: RMSE difference between L2P low 
and best L3F quality (global difference of 0.78cm). The RMSE increases as the data quality decreases. 
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Figure 27. Result on along-track correlation and the unknown truth from the extended TCA using in-situ dynamic heights, C3S 
gridded altimetric sea level anomalies and top) S3B-L3 (best) and bottom) S3B-L2P sea level anomalies. The results are on a 10x10 

degrees grid. The grid cells containing less than 10 measurements are not ignored. The global S3B-L3F correlation is 0.83 and down 
to 0.75 for S3B-L2P. 

Sea level anomalies conclusion 
A large part of the work is to select the good matchups to use in the different analyses. The choice is based 
on time and distance, with a pre-required knowledge of the oceanic correlation scales and signal variance. 
Many different choices can be made, leading to different results.  

Three primary independent datasets are used, a dynamic height calculated from in situ temperature/salinity 
profiles, a gridded sea level anomaly field (C3S) and along-track data from the S3B satellite. For the latter, we 
will check the improvements from two consecutive validation steps (L2P and L3F). L3F is the one distributed 
by SSALTO/DUACS in CMEMS.  

The two technics shown herein give an indication on the error between three independent datasets. An 
average of the two-by-two differences between the three datasets show an improvement with the latest 
processing, reducing the overall error from 4.2cm to 3.73 cm. As expected, the errors are higher in the high 
variability regions reaching over 12 cm. The second method used in this study gives a random error and other 
statistics for each dataset, with the dynamic height anomalies from in situ data as a reference. The globe is 
broken into 10 by 10 degrees squares, and the TAC is applied in each square containing from 200 to over 
1000 matchups. The overall random error is lowered by 27.5% from 3.62cm for L2P processing to 2.84 +/- 
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0.04 cm peaking at 18 cm for the best processed along track S3B sea level anomalies. The correlation between 
the SLA and the unknown truth is increased from 0.75 to 0.83. Both methods show the improvement with 
the L3F processing, giving an estimate of the error depending on the geophysical location.  

3.2. Geostrophic velocity anomalies validation 

Data processing 

Geostrophic velocities from along track S3B sea level anomalies 
Data used for along-track altimetry data is the same as 2.3, using the filtered version.  

Before the across-track velocity calculation, the SLA signal is filtered to remove any high-frequency noise. A 
4-lobe Lanczos filter with a 45 km cutoff corresponding to half window lengths of 180 km. Since the filter is 
applied over the time domain rather than the spatial domain, assuming a constant satellite ground speed of 
6.64 km s−1, the filter is really applied with a ~27 s half-window length.  

The velocity is then calculated using a finite difference to estimate the geostrophic current which results from 
the balance between the pressure gradient and the Coriolis effect. The two 2 points before and 2 points after 
the location for the estimated velocity are used. 

𝑢𝑢 =  −
1
𝑓𝑓𝑓𝑓

𝛿𝛿𝛿𝛿
𝛿𝛿𝑦𝑦

 

𝑣𝑣 =  
1
𝑓𝑓𝑓𝑓

𝛿𝛿𝛿𝛿
𝛿𝛿𝜕𝜕

 

𝑓𝑓 = 2𝛺𝛺sin(𝜙𝜙) 

𝛿𝛿 =  𝑓𝑓𝜌𝜌𝑔𝑔 

𝑢𝑢 and 𝑣𝑣 are the zonal and meridional component velocities 

𝑓𝑓 the sea water density 

𝑓𝑓 the Coriolis parameter 

𝛺𝛺 is the earth rotation rate 

𝜙𝜙 the latitude 

𝛿𝛿 the pressure 

𝜌𝜌 the surface elevation 

𝑔𝑔 the acceleration due to gravity 

Note that at the equator, 𝜙𝜙=0 so is 𝑓𝑓 is null and therefore 𝑢𝑢 and 𝑣𝑣 are infinite. Thus, the data within the 
equatorial band (at +/- 10 degrees of latitude) will be removed from the error estimations. 
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Another limitation besides the above approximations is that only the along-track 𝜌𝜌 gradient is known at any 
given observation point, and its direction is determined by the angle of the satellite track. There is no 
information on the across-track gradient so only a part of the ocean dynamics can be estimated. 

The angle between the eastward direction and the across track velocity 𝜕𝜕𝑎𝑎3𝑏𝑏 at any given point is noted 𝛼𝛼𝑎𝑎3𝑏𝑏 
(depends on the local s3b track orientation). 

In situ drifters 
Drifter velocities are extracted from the 6-hour AOML drifter database, using a drifter with a drog at 15m. 
1565 drifters are present in 2019, representing 1 105 182 velocities. The anomaly of geostrophic velocity is 
calculated as the total drifter current at 15m minus the Ekman current (deduced for ERA5 winds) and minus 
the mean dynamic topography (MDTCLS18).  

The currents are filtered in time with a Lanczos filter of half window size of 3 days and 0 lobe to produce 
velocities without tides and inertial signal, and smooth enough to compare to the altimetry signal. The 
resulting fields are 𝑢𝑢𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑙𝑙𝑔𝑔𝑔𝑔 and 𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑙𝑙𝑔𝑔𝑔𝑔.  

After altimetry and drifter collocation using a KDtree method (see Triple collocation analysis ), with longitude 
and latitude scales of 1 degree and a time scale of 6 days. The +/- 10-degree equatorial band is removed from 
the data since the classical geostrophic balance does not apply where the Coriolis parameter is null. 

The 𝑢𝑢𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑙𝑙𝑔𝑔𝑔𝑔 and 𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑙𝑙𝑔𝑔𝑔𝑔 drifter components are then projected on the collocated across the track to 
compare with the across track geostrophic velocity from altimetry. 

across track drifter velocity 𝜕𝜕𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑙𝑙𝑔𝑔𝑔𝑔= 𝑢𝑢𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑙𝑙𝑔𝑔𝑔𝑔 cos( 𝛼𝛼𝑎𝑎3𝑏𝑏) + 𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑙𝑙𝑔𝑔𝑔𝑔 sin ( 𝛼𝛼𝑎𝑎3𝑏𝑏)  

Geostrophic velocity anomalies from C3S gridded fields 
The gridded C3S geostrophic velocities anomalies are interpolated on AOML drifter location. They are 
projected across-track the same way as the drifter velocities. Note: by using interpolated 𝜌𝜌 along data on a 
grid, longitudinal and latitudinal gradients can be calculated thus lifting the constraint of a unidirectional 
gradient. The across-track geostrophic velocity anomaly is labelled 𝜕𝜕𝑎𝑎3𝑎𝑎. These data are only used in the triple 
collocation analysis but results pertaining to this dataset will not be discussed here. 

Triple collocation 
The gridded altimetric C3S data are already interpolated on drifter location. The only collocation needed is 
then between drifter location and along-track altimetric data (thus using the term matchups in relation to 
time/space location). This is done by matching each drifter location with the closest altimetric location in 
time and space using a KDtree method with a longitude and latitude scaling of 1 degree, and a 6-day time 
scaling to set the corresponding importance of the longitude, latitude, and time. For example, a matchup 
separated by 6 days has the same weight as a matchup at 1-degree longitude or latitude. This was done by 
checking for the best results with a few tests, therefore it can be improved. 

An example in the eastern part of the Gulf stream is shown in Figure 28, where the altimetric along-track SLA 
is shown (see colour bar) with the derived geostrophic velocity as grey arrows. The drifter locations are 
marked with a black + sign, and the black lines connecting drifter location and along track location show the 
matchups used for the collocation (closest in time and space). 
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Figure 28. Drifter 64502410 over 12 days in January 2019 (black +) with S3B filtered along track Sea level anomaly (colour dots) and 
associated calculated across track geostrophic velocity anomaly (grey arrows). The black lines show the related alti-drifter matchup 

closest in time and space. 

The data within the equatorial +/-10 degrees latitude band are removed since the geostrophic balance does 
not hold. 984 039 matchups are found for the year 2019 outside the equatorial band. From these, only the 
closest matchups that are where the distance is less than 20km and the time difference is less than 3 days, 
grid cells where enough data is available (>10 matchups) and the rms difference of matchups velocities is 
sufficiently low compared to the signal (see Figure 29). The importance of closeness in the matchups of the 
different sources is important since they are supposed to measure the same quantity even in regions of 
strong gradient. Thus, the interest in keeping only the closest matchups.  

 

Figure 29. drifter and S3B altimetry matchup distribution in function of matchup distance in time (abscissae) and kilometres 
(ordinates). The closer in time and space the matchup is, the more data available (left) and the lower the rms difference in velocity 

(right). Note than at least 10 data points per grid were required to calculate the statistics. 
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210 235 matchups are left (21%). The dispersions of the velocities with the full matchups or the most 
pertinent matchups are shown in Figure 30 and Figure 29 (top left and right side respectively), showing a 
better fit and correlation (top right plot) when the matchups are chosen closer together. 

 

 

Figure 30. velocity dispersion between across track drifter and S3B altimeter velocity with full matchups (top left) and matchups less 
than 20 km and 3 days apart (top right). Only 21% of the data from left figure are present on right figure. The dash line represents the 
identity line, and the solid grey line the linear regression between drifter and altimetry derived geostrophic velocity anomalies. The 
bottom figures are the same as the top one, except for S3B replaced by C3S. 

However, this is not the case between filtered drifters and C3S data. Is it because C3S data are first 
interpolated on drifter location and then collocated thus accumulating positioning errors? Or maybe scales 
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representations are too different in the two datasets. C3S data tends to underestimate the velocities 
compared to drifter data (with a gain at 0.64, see the equation of the fit in bottom right figure). The 
geographical data distribution still has a similar spread as shown in  Figure 31, but both show a lack of data 
in the southern Pacific Ocean. 

 

Figure 31. Number of matchups available per 5x5 degree with all matchups (left) and matchups such that the distance between 
points in a matchup is less than 20 km and the time difference less than 3 days (right). The grid box with less than 10 matchups are 

not shown. 

Random error standard deviation estimation 
The global triple collocation analysis is performed on values selected within the 1.5 times interquartile range 
to remove extra outliers. A bootstrap method gives access to the standard deviation of the results, thus 
ensuring robust estimated if the standard deviation is lower (here by a factor 3) than the mean of the results. 
The offset between the dataset is very low, and the gain show, as seen in §7.2 that C3S underestimates the 
geostrophic velocity anomaly. The mean of the dataset is low, and S3B shows more variability with a standard 
deviation of 10.78 cm.s-1 than drifters with 8.67 cm.s-1 and C3S with 7.28 cm.s-1. 

The random error based on the covariance between drifters, S3B and C3S have a mean RMSE=4.76 cm.s-1, 
7.82 cm.s-1 and 5.41 cm.s-1 respectively. The associated standard deviations show that, within the frame of 
the method, these estimations are robust (Table 13).   Assuming the drifter perfectly calibrated the rescaled 
RMSE (rrmse) in the drifter plane for S3B and C3S is larger, showing a higher precision in altimetry than 
drifter. This can be a side effect of all the processing done, and data filtering might need adjustment to 
estimate the matchups.  

Table 13. Results from the tri-collocation analysis of across track geostrophic velocity anomalies. The +/- 10 degree latitude band is 
removed, and matchups less than 20km and 3 days apart are taken into account. The random errors (RMSE and rescaled RMSE) are 
in are in cm.s-1.  

Across track geostrophic velocities anomalies in cm.s-1 (equatorial band +/-10 degrees removed) 
Estimates on 500 bootstraps with 10000 samples each without replacement 
TC selection=1.5*[75,25] quantiles 
Geostrophic velocities anomalies          𝜕𝜕𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑙𝑙𝑔𝑔𝑔𝑔 𝜕𝜕𝑎𝑎3𝑏𝑏 

 
𝜕𝜕𝑎𝑎3𝑎𝑎 

 
Nb outliers              1372.41 (34.35) 1372.41 (34.35) 1372.41 (34.35) 
Nb used                 8627.59 (34.35)  8627.59 (34.35) 8627.59 (34.35) 
mean                    -0.01 (0.11)    -0.12 (0.13)    -0.05 (0.09) 
std                      8.67 (0.10)    10.78 (0.12)     7.28 (0.10) 
gain                     1.00     1.03 (0.02)     0.67 (0.02) 
offset                   0.00    -0.11 (0.10)    -0.05 (0.07) 
Correlation with unknown truth                      0.84 (0.01)     0.69 (0.01)     0.67 (0.01) 



 
 
 
 

39 
 

 

The same analysis is carried out locally on a 5-degree longitude by 5-degree latitude grid to estimate the 
regional deviation between the three datasets, and the results are shown on Figure 32. 

 

 

Figure 32. Results from the tri-collocation method between drifters, S3B along track altimetry, and gridded C3S across track 
geostrophic anomaly after removing the +/-10 degrees equatorial band (geostrophic equation not valid), keeping matchups where 

distance is less or equal to 20km, time difference is less than 3 days. Only RMSE results where bootstrapping results are reliable (the 
variability of the result is less than the result) are plotted. 

The tri-collocation analysis gives information about the random error associated with the three datasets. 
These results are obtained after 500 draws of 10000 samples each per 5x5 degrees grid cells. RMSE errors 
area is still high around the equator (over 20 cm.s-1) and in areas of strong current (e.g., the Gulf Stream, 
Kuroshio, etc.).  

3.3. Conclusions 
Two types of error estimation techniques were presented, one additive and the other one (the triple 
collocation analysis, TCA) to estimate a random bias between three independent global data sets. They show 
similar results where errors are higher in high variability regions, which is partly linked to errors in data 
collocation, especially where gradients are strong. The methods were applied to sea level anomalies and 
geostrophic velocities anomalies. The method showed the improvement of the S3B along-track data by 

rmse                     4.76 (0.12)     7.82 (0.12)     5.41 (0.08) 
rrmse                       -     7.63 (0.23)     8.05 (0.26) 
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DUACS processing, lowering the error with respect to Argo drifter and C3S sea level anomaly maps.  Some 
areas were not very well represented in space, especially the southern Pacific Ocean for the drifter/altimetry 
velocity validation.  

More precise processing such as filtering, scaling, and matching should probably be carried out:  

- Ensure that the data filtering on drifter and altimetry products are more coherent and best for 
comparison 

- The projection on the across-track and colocation between altimetry-derived velocity and drifter 
velocity leads to errors, and so does the interpolation of C3S onto drifter locations 

- This method will probably be more adapted to altimetry data such as SWOT, where 2-D gradients 
can be estimated, thus enabling access to the whole signal 

- Use regional scale representativeness to select the matchups with the drifter as was done for 
dynamic high processing. 

However, these validations showed the importance of in-situ data to validate altimetry and a homogeneous 
time and space distribution is important to compare the datasets. 

4. BGC Argo array for the validation of ocean colour satellite missions, in 
particular S3A&B (ACRI-ST) 

4.1. Introduction 
Remote sensing observations of the ocean colour has allowed to monitor the surface ocean and the biological 
activity at the global scale for more than 24 years now. Satellite observation of the ocean colour is a key 
information for a sustainable ocean. Indeed, chlorophyll surface concentration can be derived from the ocean 
colour and, as phytoplankton is at the basis of the marine food web, an index of the productivity of the system 
can be derived from the estimated chlorophyll concentration. What is a precious help for instance for 
fisheries, as the fish catch potential can be linked to the chlorophyll concentration. In addition, ocean colour 
data are also important for climate, as the productivity of the system is an important parameter to estimate 
the efficiency of the biological carbon pump. Ocean colour can be also used to monitor the sea-water quality. 
For instance, thanks to specific algorithms, these observations can help for fight against harmful algal bloom. 

Nevertheless, remote sensing data should be regularly validated as the information derived from the ocean 
colour (e.g., chlorophyll concentration) is retrieved with some assumptions, for instance, one should consider 
that the atmospheric corrections are properly applied, and the algorithm used to derive the variable is 
suitable for the region of interest. Also, for sensors with relatively long time series, sensor drift can potentially 
occur, and in such cases, the validation of the ocean colour data can be useful to point it out and to trigger 
remediation (e.g., new calibration). 

Satellite ocean colour data are validated against in situ data. Historically, these data were from bottle 
sampling and HPLC analysis in a laboratory or derived from direct fluorescence measurements. However, 
these measurements are costly and time-consuming, not to mention that some parts of the ocean are 
difficult to reach. Also, there is a delay which can be important between the acquisition time and the time 
when the data is publicly available.  
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BGC-Argo autonomous platforms increase the number of in situ data for the validation of ocean colour. These 
platforms now cover a wide part of the global ocean, with more than 100 000 of chlorophyll profiles acquired 
since the beginning of the program in 2005. The use of autonomous platforms takes on its full meaning for 
the quality control and the validation of some ocean colour data as data from these platforms are available 
soon after their acquisition and data can be available everywhere, regardless the sea state. 

The aim of this study is to demonstrate how efficient are the BGC-Argo for the validation of the satellite 
ocean colour data from Sentinel3 A & B. 

4.2. Data description 
BGC-Argo data are freely accessible on the two Global Data Assembly Centres (US-Godae and Coriolis). In the 
frame of this study, data were collected from the FTP access of the Coriolis centre. There were 42924 profiles 
coincident with the Sentinel-3 period (April 2016 – present).  

Once the access to the BGC-Argo has been established, one should extract the data of interest, in the present 
case, the chlorophyll concentration (CHL), the particulate backscattering (BBP) and the coefficient of diffuse 
attenuation (Kd). To be fully comparable with satellite observation, in situ data should be reported on the 
same scale than satellite data. Indeed, satellite can “see” only the upper layer of the ocean, while BGC-Argo 
float document the water column, from the surface up to 1000 or 2000 m depth. 

The location of the BG-Argo profiles used for this study are presented on the map Figure 33. 

 

Figure 33. Location of the matchups between BGC-Argo profiles and Sentinel-3 observations (profiles acquired from April 2016 up to 
December 2021). 

BGC-Argo are associated with a wide network allowing to document different environment. This presents a 
good advantage, notably for the validation of regional algorithm. 

Chlorophyll a in situ processing  
To make the in situ CHL comparable with satellite observations, the chlorophyll concentration should be first 
averaged over the first optical depth (Zpd) which represents roughly the depth at which 90% of the solar light 
is absorbed due to the seawater constituents (water, particles, dissolved matter). This depth is derived from 
the Morel et al. (2007) formula: 
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𝐾𝐾𝑑𝑑 = 0.166 + 0.077298 ∗ 𝐶𝐶𝜕𝜕𝐿𝐿00.67155  (1) 

And then 

𝑍𝑍𝑝𝑝𝑔𝑔 = 1
𝐾𝐾𝑔𝑔

     (2) 

Where CHL0 correspond to the chlorophyll surface concentration. In the case of BGC-Argo floats, this 
chlorophyll surface concentration is taken as the median value of the chlorophyll measured by BGC-Argo 
float between the surface and 10 m. This allows computing Zpd (eq. 1 and 2 above). 

The chlorophyll concentration measured by BGC-Argo is then averaged between the surface and Zpd. 

For validation purposes, the “adjusted” chlorophyll from the BGC-Argo files was considered. These profiles 
have been processed in delayed mode, with more accurate correction factors. 

Indeed, to convert fluorescence measurement into chlorophyll concentration, some corrections should be 
applied. 

1. Dark correction (which corresponds to the removal of the background) 
2. Slope correction (which corresponds to the correction to apply for the from fluorescence to 

chlorophyll concentration 
3. Quenching correction 

Using the adjusted chlorophyll profile for satellite validation is expected to improve the accuracy and 
reliability of the data. 

In the case of this study, two ocean colour algorithms were compared with BGC-Argo, the GlobColour product 
based on OC5 and Hu algorithm (Gohin et al., 2002, Hu et al., 2012), and the GSM product (Maritorena and 
Siegel, 2005). 

Particulate back scattering (BBP) 
The particulate backscattering corresponds to an index for the sea concentration in particles. In the open 
ocean, the BBP covary with the concentration in particulate organic carbon as the essential source of particles 
is mainly the biological activity, and especially the phytoplankton productivity (Bishop, 2009, Loisel et al., 
2002).  

As for the chlorophyll concentration, the BBP is averaged over the first optical depth determined by the Morel 
et al. 2007 methodology (eq. 1 and 2).  

From satellite observations, the BBP is derived from remote sensing thanks to the GSM algorithm (Maritorena 
and Siegel, 2005). 

The BBP measured by the BGC-Argo floats are not given at the same wavelength as the one derived from 
satellite observations (520 and 700 nm for BGC-Argo and 443 nm for satellite observations). To be 
comparable, satellite observations should be converted to BBP of the same wavelength than BGC-Argo.  

To perform this conversion, we applied the Quasi Analytical Algorithm (QAA v6) originally developed by Lee 
et al. (2002) to derive the absorption and backscattering coefficients by analytically inverting the spectral 
remote-sensing reflectance (Rrs (λ)). 

The conversion is based on the following: 
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𝑏𝑏𝑏𝑏𝑝𝑝(𝜆𝜆) = 𝑏𝑏𝑏𝑏𝑝𝑝(𝜆𝜆0) ∗ �𝜆𝜆0
𝜆𝜆
�
𝜂𝜂

    (3) 

Where λ0 correspond to the wavelength of reference and η the BBP exponent. This exponent is estimated 
thanks to remote sensing reflectance as follows: 

𝜌𝜌 = 2 ∗ �1 − 1.2 ∗ exp �−0.9 ∗ 𝑔𝑔𝑟𝑟𝑟𝑟(443)
𝑔𝑔𝑟𝑟𝑟𝑟(560)��  (4) 

With: 

𝑟𝑟𝑔𝑔𝑎𝑎(𝜆𝜆) = 𝑅𝑅𝑟𝑟𝑟𝑟(𝜆𝜆)
0.52+1.17∗𝑅𝑅𝑟𝑟𝑟𝑟(𝜆𝜆)    (5) 

Then, the BBP at 443 nm of satellite observations is converted in BBP at 532 and 700 nm to be compared 
with BGC-Argo float.  

Coefficient of diffuse attenuation (Kd) 
The coefficient of diffuse attenuation is an indicator of the turbidity of the water column. From satellite 
observation, this coefficient is estimated from the Morel et al. (2007) algorithm, based on the chlorophyll 
concentration. 

BGC-Argo floats do not directly measure this parameter, but it is derived from the downwelling irradiance 
(Ed) following the methodology defined by Organelli et al. (2017a). The method used is briefly described here 
below. First, Ed measurements from BGC-Argo are extrapolated toward the surface thanks to a polynomial 
function. Then, Ed data are binned to 1 m of resolution within the first optical depth. The coefficient Kd is 
estimated as the slope of a linear regression between the natural logarithm of the Ed and depth (Mueller et 
al., 2003). The coefficient Kd is considered as valid when the regression is estimated with, at least, 3 points 
and the coefficient of determination (R²) of the regression Ed vs depth is higher than 0.9. 

In the frame of this study, two satellite algorithms have been compared with BGC-Argo data. The algorithm 
defined by Morel et al. (2007) and the one developed by Lee et al. (2005). 

Matchup procedure 
Matchup data correspond to BGC-Argo data and satellite observation acquired coincidently at the same 
location. Here, a macro-pixel of 3x3 pixels were considered. A matchup is considered as valid when at least 
50% of the pixels within the macro-pixel are valid, and the coefficient of variation is lower than 0.15. Once 
the matchup is considered as valid, satellite observation and BGC-Argo data can be compared. Satellite data 
which is used for comparison is the median of the values within the macro-pixel (to filter out outliers). 

Note that the number of matchups for chlorophyll data is more important than the number of matchups for 
the other parameters as the fluorescence sensor equipped more often BGC-Argo than radiometer or 
backscattering sensor. 

  

4.3. Global validation 

Benefit of the BGC-Argo floats on the number of matchups 
After the pre-processing of the data, chlorophyll concentration, BBP and Kd estimated from satellite 
observations can be compared with data measured by BGC-Argo.  
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As previously mentioned, one of the advantages of the BGC-Argo in the validation of ocean colour products 
is the fast availability of the in situ data, especially for OLCI as its observations start in April 2016. Indeed, the 
number of matchups with BGC-Argo available per year, and per region, is independent of the availability of 
human resources. For instance, the number of matchups remains elevated in 2020, despite the pandemic 
and the lockdown (Figure 34). 

 

Figure 34. Number of matchups between OLCI observations and BGC-Argo data. The red bars are for the chlorophyll, the blue bar for 
the BBP and the violet bars for the Kd. For the chlorophyll and the Kd, the bar is representative of the mean between two considered 
algorithms (OC5 and GSM for the chlorophyll, and Lee and Morel for the Kd). The error bars for both parameters correspond to the 

number of matchups of difference between the two algorithms considered. 

The number of in situ data used for the validation is considerably improved by the use of BGC-Argo floats. If 
one use only data from oceanographic cruises, the number of matchups will be reduced. For example, the 
Ocean Colour Thematic Assembly Centre identified, for the Copernicus Marine Service, less than 600 
matchups7 for the OLCI period (2016-2020). The validations of the Kd and the BBP with cruises data are even 
less meaningful than the chlorophyll ones. 

Note that the term “validation” should be interpreted as an attempt at quality control of ocean colour 
algorithms. Indeed, the chlorophyll concentration is not directly measured by the floats but is derived from 
their fluorescence measurement.  

Chlorophyll validation 
The high number of matchups and the relatively global coverage of BGC-Argo allow for comparing different 
chlorophyll algorithms. In the present case, the usefulness of BGC-Argo is proved for the comparison of OC5 
and GSM chlorophyll algorithms. 

There are more matchups for the OC5 algorithm than GSM algorithm. This can be explained by the flagging 
strategy which is not equivalent to the two methods (Garnesson et al. 2019). BGC-Argo tend to demonstrate 
that there is no significant difference between both algorithms, but the validation results present a slight 
better correlation between BGC-Argo floats with GSM data than with OC5 data. Indeed, the slope of the 

                                                           

7 http://octac.acri.fr/ 

http://octac.acri.fr/
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regression line is closer than 1 with GSM and the RMSE is relatively lower for this last algorithm than with 
OC5 (0.47 mg.m-3 for OC5 and 0.42 mg.m-3 for GSM).  

 

Figure 35. Scatter plot of the chlorophyll concentration (a. for OC5, b. for GSM), BBP without and with modification of the 
wavelength (c., d.) and Kd (e. for Lee, f. for Morel) derived from ocean colour against the in situ measurements from BGC-Argo 

floats. The colour of the dot corresponds to the ratio BBP/CHL estimated from BGC-Argo data. Due to the lognormal distribution of 
the three parameters (chl, Kd and BBp), the validation plots are given on a logscale. 

As BGC-Argo floats samples different environment of the global ocean, it is possible to assess the 
performance of the algorithm as a function of the range of chlorophyll concentration. The scatter plot of 
validation for OC5 data seems to overestimate the low chlorophyll concentrations compared to Argo floats. 
This overestimate is less pronounced with the GSM algorithm.  
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To understand the deviation between satellite and BGC-Argo, the set of parameters measured by the floats 
can be used as they are precious information on the surrounding environment. For instance, the ratio 
BBP/CHL measured by the BGC-Argo can be used to get more information on the origin of the particles. 
Indeed, the ratio BBP/CHL is known to be an optical index of the phytoplankton community composition 
(Cetinić et al., 2015; Lacour et al., 2017). For instance, high BBP/CHL ratio might be due to the presence of 
viruses and/or bacteria or even a relatively important concentration in non-living material, such as detritus 
or inorganic particles (Bricaud et al., 2004; Claustre et al., 1999; Oubelkheir et al., 2005). Conversely, large 
phytoplankton cells (such as diatoms) are generally characterised by a low BBP/CHL ratio.  

The scatter plot in Figure 35a-b presents a relatively high BBP/CHL ratio for low chlorophyll concentration, 
while the discrepancy between satellite observations and floats measurement increases. The discrepancy 
observed for the low range of chlorophyll concentration might be associated with a dominance of small 
phytoplanktonic cells.  

The validation plot also presents a deviation for higher concentrations. Indeed, for some points of the 
dataset, the concentration of the chlorophyll in situ is comprised of between 0.5 and 1 mg.m-3 while satellite 
observations estimate the concentration between 1 and 100 mg.m-3, about one order of magnitude higher. 
This may occur in coastal regions, or in regions affected by mineral particles (e.g., dust, riverine discharges), 
as inorganic particles are known to be more refractive than organic ones. This deviation is less pronounced 
for GSM algorithm than OC5 indicating the potential weakness of this last algorithm in such environments. 
However, a BBP/CHL ratio, which would argue for the impact of mineral material, is not clearly noticeable for 
this range of chlorophyll concentration and does not allow to fully explain this deviation. 

Validation of the BBP product 
The validation of satellite products of BBP and Kd benefit also the availability of the BGC-Argo floats. For the 
BBP, the wavelength correction does not appear to improve the validation. Actually, the wavelength 
correction appears to degrade the validation results, with a slope of 1.21 for the corrected data while the 
slope is 1.04 for non-corrected data. The error (RMSE) is equal for both corrected and non-corrected data 
(0.3, Figure 35c-d). This seems to indicate that the algorithm used for the wavelength correction is not well 
adapted. For the BBP validation using the BGC-Argo float, the satellite observations can be directly compared 
to in situ measurement at 700 nm. Note that for some floats, the BBP is also measured at 532 nm. However, 
the number of matchups with BGC-Argo measurement at this last wavelength is noticeably reduced 
compared with measurements at 700 nm and presents weaker validation results. The discrepancy between 
satellite and BGC-Argo being reduced at 532 nm, one should preferentially consider BBP measurement at 
700 nm for satellite validation purposes.  

The in situ ratio BBP/CHL does not appear to be linked with the deviation between in situ and satellite BBP. 
This indicator is not as useful as for the chlorophyll validation in explaining deviation. 

Validation of the coefficient of diffuse attenuation 
For the coefficient of diffuse attenuation (Kd), and as for the chlorophyll, two algorithms are compared with 
BGC-Argo data (Lee: Figure 35e, and Morel: Figure 35f). The number of matchups for the Kd validation is the 
weakest compared to BBP and Chl. Indeed, at the moment, only few BGC-Argo floats are equipped with 
radiometer. At the moment of writing of this report, 13 floats are actively measuring irradiance data, while 
62 floats measure the chlorophyll. Even if the number of floats measuring irradiance is significantly lower 
than the one measuring chlorophyll, there are 3699 matchups available for the validation of the Lee algorithm 
and 3869 matchups for the Morel validation. This number of matchups give confidence in the results. 
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Performance of both algorithms appear to be relatively similar. First as the number of matchup with OLCI 
data is roughly equivalent, then because the slopes of the regression line are close to each other (0.59 for 
Lee and 0.52 for Morel). The RMSE are also relatively equivalent (0.3 for Lee and 0.2 for Morel). 

As the network of the BGC-Argo is spread over the global ocean, the validity of the ocean colour products 
can be studied in function of the surrounding environment. Indeed, due to the presence of diverse particles 
(size, origin etc…), global ocean colour products might be less accurate in coastal waters than in the open 
ocean, where the particles are mainly from the degradation of the phytoplankton. Then, the validation of 
ocean colour products can be carried out in function of the biomes as defined by Longhurst et al., 1996. The 
results for the polar, coastal, trade winds and westerlies biomes can be compared between them and 
compared with the statistical results for the global ocean.
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Figure 36. Scatter plot of the chlorophyll concentration derived from ocean colour against the chlorophyll concentration measured in situ with BGC-Argo for OC5 algorithm (upper panel) and GSM 
algorithm (bottom panel). The scatter plots are given for the four  biomes as defined by Longhurst et al., 1995, the trade wind (a, e), westerlies (b, f), coastal (c, g) and polar (d, h). 

 

 
 

  



 
 
 
 

49 
 

  

 

Figure 37. Scatter plot of the BBP derived from ocean colour against the BBP measured in situ with BGC-Argo for wavelength corrected (upper panel) and uncorrected wavelength (bottom panel). 
The scatter plots are given for the four biomes as defined by Longhurst et al., 1995, the trade wind (a, e), westerlies (b, f), coastal (c, g) and polar (d, h). 
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Figure 38. Scatter plot of the Kd derived from ocean colour against the Kd measured in situ with BGC-Argo for Morel algorithm (upper panel) and Lee algorithm (bottom panel). The scatter plots are 
given for the four biomes as defined by Longhurst et al., 1995, the trade wind (a, e), westerlies (b, f), coastal (c, g) and polar (d, h). 
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4.4. Biomes analysis  
The performance of the ocean colour products appears to be relatively equivalent regardless of the 
considered biomes (Figure 36). However, better results are assessed for the trade wind and the westerly 
biomes, mainly representative of open waters. Polar and coastal areas are special regions, due to the physical 
environment, with strong wind for instance, or a wide diversity of particles close to the coast. The global 
algorithm might potentially be associated with stronger uncertainties in such regions (both on BGC floats 
measurements – due to waves agitation conditions and on Ocean Colour derived which is sensing surface 
with a lot of foam). One should also consider an increased uncertainty for BGC-Argo measurement in the 
polar biome. Indeed, in such an environment, the phytoplankton cell does not respond as the other part of 
the globe, as it lives in a highly dynamic environment, and photo-acclimatisation occurs. The ratio between 
the fluorescence and the chlorophyll concentration is a function of different parameters such as the growth 
phase and photophysiology (Cullen, 1982). This ratio is expected to be affected in the polar region, where 
the light availability might be limited due to mixing induced by the wind. Note that the BGC-Argo floats are 
corrected by HPLC measurement concomitant with the BGC-Argo deployment. However, the ratio of 
fluorescence-chlorophyll may vary with the region and the season and therefore with the float life. In the 
polar environment, the ratio used for the sensor correction may be not as accurate as for the beginning of 
the mission and may lead to the degradation of the quality of the Argo chlorophyll product (Organelli et al., 
2017b). 

The satellite observations of the BBP present a relatively good correlation with BGC-Argo data in all biomes 
except for the trade winds biome for which there is no correlation (regression slope of 4 and a coefficient of 
determination of 0.04, Figure 37). The weakest validation values are observed for the trade wind biomes, 
where the concentration in organic particles is the lowest, as in the oligotrophic gyres, and where therefore 
BBP values are the lowest. The bad results in this biome might be explained by the uncertainties associated 
with low BBP values. Satellite BBP present an underestimation within this biome. 

For the Kd, as for the BBP, the weakest validation results are assessed for the trade winds biome (with a slope 
of the regression line of 0.23, Figure 38). The strongest validation results are assessed for the coastal biome, 
with the slope of the regression line higher than 0.75. Note however that for this biome, the number of 
matchups is limited and might be not as significant as for the westerly biome. 

4.5. Estimate of the error 
As previously demonstrated for the Euro-Argo RISE project, the triple collocation technique would allow to 
highlight regional deviation between BGC-Argo measurement and satellite observations of ocean colour. 
Indeed, the triple collocation estimates the error associated with three concomitant sources of data. Note 
that at the time of this study, the third source of data is missing to apply the triple collocation and estimate 
the error associated with BBP and Kd. 

For the chlorophyll, thanks to the estimate of the error associated with each method, it is possible to flag 
pixels associated with each matchup in order to observe potential spatial trends between satellite 
observations and floats measurements.  

For each point of matchup, the difference in concentration between satellite and floats is compared to x time 
the error of the matchups (σ).  
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𝜎𝜎 = �𝜎𝜎𝑙𝑙𝑔𝑔𝑔𝑔𝑙𝑙2 + 𝜎𝜎𝑎𝑎𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑙𝑙𝑔𝑔2  

In the present case, in order to benefit from the most accurate error estimate, the error is estimated at the 
global scale, and then σ equals 0.09. 

When these deviations are plotted on a map (Figure 39), regional patterns seem to appear, notably for the 
Southern Ocean. Indeed, for the austral ocean, satellite observations are globally lower than BGC-Argo floats 
measurements, with a deviation between these two sources of data being equivalent to more than 2 times 
the error of the matchup. It should be notice that there is no consensus on the origin of these deviations. 
One can argue that the physical condition limits the quality of satellite measurements. Indeed, the austral 
ocean is a dynamic environment, with highly windy conditions potentially affecting satellite measurements 
due to the formation, for instance, of whitecaps at the sea surface.  

Other can claim for BGC-Argo error is the chlorophyll retrieval. Indeed, in the austral ocean, the 
phytoplankton growth might be considered as co-limited by the iron and the light availability. Phytoplankton 
should adapt their photosynthetic apparatus to the environmental conditions, with a potential influence on 
the fluorescence to chlorophyll ratio (Petit et al., 2022). Some refinement of the relation between 
fluorescence and chlorophyll, considering the composition of the phytoplankton communities may improve 
the accuracy of the sensors. 

Therefore, in the particular region of the Southern Ocean, the validation of chlorophyll products with BGC-
Argo floats should be considered with caution, keeping in mind that both satellite and floats might be 
associated with bias and error. 

For the other region (from mid-to-low latitude), no clear trend appears on the map. For this range of latitude, 
the deviation between satellite and BGC-Argo floats appears rather low, with a deviation comprised between 
0 to 1 σ. This low deviation tends to indicate the suitability of BGC-Argo for the validation of satellite 
estimations of the chlorophyll concentration, as the pattern is relatively similar for both tested chlorophyll 
algorithms.  

There is nevertheless an exception for the black sea, where satellite observations appear to overestimate the 
chlorophyll concentration. This might be due to the relatively complex water in this sea, for which the usual 
chlorophyll algorithms are not performing well. 



 
 
 
 

53 
 

 

Figure 39. Map of the deviation between chlorophyll concentration estimated by satellite or derived from BGC-Argo floats 
measurements. The colour of the dots indicated how satellite and BGC-Argo deviate considering the error (sigma) associated to the 

source of data.  
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4.6. Conclusion 
For the validation of the OLCI data, the BGC-Argo present strong advantages notably thanks to the important 
number of in situ measurement each year, and the fast availability of the data. Also, BGC-Argo allows 
documenting the global ocean, whatever the season, without engaging any human resources in difficult 
sampling conditions. Indeed, the validation of OLCI data, and especially for OLCI data from Sentinel-3B, might 
be challenging considering only data acquired during oceanographic cruises. First, data from cruises often 
require processing at the laboratory, which may delay the availability of the data. Secondly, because in some 
cases, the data shows properties of the organisation which did the measure, limiting the number of available 
data. 

Another advantage of BGC-Argo floats in the validation of ocean colour data is the set of parameters 
measured by these platforms. The validation is not limited to chlorophyll algorithms, but also particular 
backscattering or coefficient of diffuse attenuation. The validation of these parameters is as important as 
chlorophyll validation since Kd and BBP are proxies for the particle concentration. Also, as BBP is considered 
proportional to the particulate organic carbon in the open ocean, it might be used for the estimation of the 
efficiency of the biological carbon pump. 

When satellite observations and BGC-Argo floats measurements are associated with a third source of data, 
the error of each source of data can be determined thanks to the triple collocation. The error hence 
determined can be used as an index to detect trends in particular regions, and potentially propose some 
improvement of the algorithm. 

The number of available matchups thanks to BGC-Argo floats may help to compare the performance of 
different ocean colour algorithms at a global and/or regional scale. For instance, in the present study, BGC-
Argo pointed out that the accuracy of the GSM algorithm appears to be better than the OC5 for the 
chlorophyll, except in the polar biome, or both algorithms present strong discrepancies with Argo floats. In 
that biome, some uncertainties remain between fluorescence and chlorophyll and the systematic deviation 
observed in the austral ocean call for an improvement in the calibration of the fluorescence sensor.  

Even if BGC-Argo floats should not be considered golden sensors, the expansion of the BGC-Argo network, 
together with the diversity of sensors on each float is undoubtedly a strength for the validation of ocean 
colour data. 

General conclusions 
The main objective of this task is to validate data from Sentinel-3A (S3A) and Sentinel-3B (S3B) satellite and 
remote sensing algorithms with in situ observations, such as sea level height from gliders and Argo drifters, 
velocities from gliders, drifters, HF radars and ADCP, and ocean colour from BGC Argo. 

Different methods are applied, from traditional rms differences to triple collocation to estimate random 
errors from the correlations between three datasets.  

A glider in the Balearic Sea sampling the ocean underneath S3A tracks shows good agreement in dynamic 
height with good correlation greater than 0.85 and RMS of 1.3cm, and the across-track geostrophic velocity 
RMS vary from 4.4cm/sec to 9.6 cm/s, the later when the satellite track and glider are farther apart. The 
comparison with depth average velocities (DAV) shows a ~0.75 correlation and RMS of 10cm/s due to a 
difference in the signal content between GPS-derived DAV and altimetry-derived signal. 
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In the Bay of Biscay, altimetry data is compared to in-situ HF radar and ADCP measurements. The region is 
broken into different sub-region with different current regimes. The along-track analysis showed that periods 
or areas of a strong geostrophic signal are recommended for carrying out the comparisons. For the TC 
comparison, a similar precision was observed for the ADCP and the altimeter in terms of random error 
(around 3.45 cm/s) whereas the altimeter measurements differed from the ADCP in terms of instrumental 
error with a gain (i.e., multiplicative error) of 1.98 and an offset (i.e., additive error) of 3.85 cm/s.  The addition 
of the Ekman currents into the analyses improved, as shown in previous studies, the agreement between in-
situ and altimetry-derived currents. This suggests that the sensitivity to the addition of the wind effects 
should be considered in future altimeter validation comparisons, at least in terms of current velocities. 

Globally TC applied to Argo floats and sea level anomalies from different altimeter shows improvements in 
altimeter data processing (between L2 and L3 products) with errors dropping from 3.62 cm to 2.84 cm and 
an increase in correlation. TC applied on longitude/latitude gridded locations shows higher errors in strong 
ocean variability regions. The TC is also applied to AOML drifters and along geostrophic velocities, and along-
track S3B velocities have a less precise random error (7.8 cm/s) than the drifters (4.8 cm/s). As previously, 
the errors are higher in strong gradient areas. These methods show a sensitivity to the post-treatment of the 
data and should be carefully set up. They are a good tool to assess data quality. 

Finally, S3A ocean colour for the OLCI sensor is validated against Argo BGC, and remote sensing OC5 and GSM 
are tested. The BGC-Argo present strong advantages notably a global and important number of in situ 
measurement, a large set of parameters and the fast availability of the data. Thus, in addition to chlorophyll 
algorithms validation, backscattering or coefficient of diffuse attenuation is also validated. These latter 
parameters are as important as chlorophyll since Kd and BBP are proxies for the concentration of particles. 
Also, as BBP is considered proportional to the particulate organic carbon in the open ocean, it might be used 
for the estimation of the efficiency of the biological carbon pump. With the addition of a third source of data, 
the error of each source of data can be determined by triple collocation analysis, and the estimated error can 
be used as an index to detect trends in particular regions, and potentially propose some improvement of the 
algorithm such as in the calibration of fluorescence sensor. 

All these above studies show that in situ data are invaluable for the validation and calibration of satellite 
measured/derived ocean parameters. The diversity of sensors, their density in time and space and their rapid 
availability is a key to the improvement of present and future missions, and our knowledge of the ocean. 

Recommendations 
From the studies carried in this project, the data most reliable for satellite QC depend on the physical or bio 
geochemical parameter to qualify, and the region. INSITU profiles are very interesting since they are 
distributed almost all over the globe, are well qualified, and velocities derived from drifters have a good 
potential for the estimation of satellite derived velocities. On a regional scale, an approach with HF radar 
allows a closer coastal validation and glider observations can target a very specific region. More specifically, 
with satellite resolution increasing, it will allow checking the finer scales. Finally, BGC-Argo are efficient in 
terms of time availability and coverage (even if not enough) compared to data from ocean cruise, and of 
great importance to timely validate ocean color from sentinel-3 A and B, thus the need to maintain the 
deployment effort in order to better sampled the equatorial ocean and especially the Indian ocean and to 
foster the deployment of BGC-Argo floats equipped with radiometer, in order to enhance the robustness of 
the validation of the optical product (i.e. Kd). 
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