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Executive summary  
Deliverable 2.3 describes the study developed in Task 2.3 of the EuroSea project. It includes 
recommendations for the design of in situ experiments aimed to reconstruct fine-scale ocean currents (~20 
km), such as those that will be conducted to validate SWOT satellite observations. An advanced version of 
the spatial optimal interpolation used in field experiments, which also includes the temporal variability of the 
observations, has been applied to evaluate different sampling strategies. In addition, we have tested two 
reconstruction methods based on machine-learning and model data assimilation. Finally, we have evaluated 
the recently developed MIOST technique to map nadir altimetry using current observations derived from 
drifters. 

1. Introduction to EuroSea 
Although the Ocean is a fundamental part of the global system providing a wealth of resources, there are 
fundamental gaps in ocean observing and forecasting systems, limiting our capacity in Europe to sustainably 
manage the ocean and its resources. Ocean observing is “big science” and cannot be solved by individual 
nations; it is necessary to ensure high-level integration for coordinated observations of the ocean that can 
be sustained in the long term. For Europe, EuroSea will point the way for the current and future cooperation 
between science and industry, politics and the public with the common goal of a sustainable blue economy 
and the responsible handling of the sensitive marine ecosystems. The project will make a significant 
contribution to not only generating, processing and linking information about our oceans, but also to make 
long-term and extensive use of this and the resulting knowledge in a wide variety of areas. As a link between 
sectors and disciplines, EuroSea faces a very big challenge. 

2. Introduction to WP2 
The overall objective of WP2 is to apply the systems design processes of the Framework for Ocean Observing 
(FOO) on the EuroSea observing system in support of connected and integrated European Ocean Observing 
systems for the broader Atlantic Ocean and Mediterranean Sea. It builds on the H2020 AtlantOS 
achievements and take on its legacy to further develop them within the Galway and Belém agreements 
objectives. Specific objectives are: 

• To define the high-level requirements of EuroSea based on the societal benefits, providing a direct 
link to societal challenges related to the larger Atlantic and Mediterranean basins and the European 
Blue Growth strategy. These requirements will be translated into strategic recommendations about 
sustained monitoring of EOVs and linked with LR7 and LR8 societal relevant indicators. 

• To identify the requirements in existing observing networks in support of specific demonstrators 
(WP5,6,7). 

• To deliver guidance to improve existing elements and/or implement new ocean observing 
components to EuroSea using various techniques, including OSSEs and data assimilation to optimally 
merge in-situ and satellite observations with models to provide accurate estimates for indicators. 
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3. Introduction to T2.3 
Space borne and in situ observations provide essential and complementary information on fine-scale ocean 
structures. Task 2.3 has the objective to improve the design of multi-platform experiments aimed to validate 
the Surface Water and Ocean Topography (SWOT) satellite observations with the goal to optimize the utility 
of these observing platforms. Considered the next big breakthrough in Earth observation, the SWOT satellite 
mission, with a resolution one order of magnitude higher than present altimeters, will be launched in 2022 
by the National Aeronautics and Space Administration (NASA) and the Centre National d’Études Spatiales 
(CNES) with contributions of the UK and Canadian Space Agencies (Morrow et al., 2019). The SWOT mission 
will provide sea surface height (SSH) measurements in two dimensions along a wide-swath altimeter with an 
expected effective resolution in wavelength of 15-45 km (Fu and Ferrari, 2008; Fu and Ubelmann, 2014, Wang 
et al., 2019). After launch, the SWOT satellite will follow a fast-sampling orbit to provide observations of SSH 
on a daily basis in specific areas of the world ocean for instrumental calibration/validation. The SWOT fast-
sampling phase is considered an ideal opportunity to coordinate in situ experiments with the objective to 
study fine-scale dynamics and their role in the Earth system (d'Ovidio et al., 2019). 

To anticipate the daily high-resolution two-dimensional (2D) SSH fields that SWOT will provide, the PRE-
SWOT multi-platform experiment was conducted in the southern region of the Balearic Islands (western 
Mediterranean Sea) in May 2018 (Barceló-Llull et al., 2018, Barceló-Llull et al., 2021). In situ observations 
from gliders, drifters, a Conductivity Temperature Depth probe (CTD), and a hull-mounted Acoustic Doppler 
Current Profiler (ADCP), were collected to evaluate the horizontal and vertical velocities associated with the 
scales that SWOT will resolve (defined as fine scales). This experiment highlighted the need to increase the 
spatial resolution of altimetric observations comparing present altimetric fields with in situ observations. It 
also revealed the need to study the impact of including some modification in the design of future experiments 
aimed to validate SWOT, like the depth of the CTD measurements and the impact of changing rosette CTD 
casts for an underway CTD. In addition, even if the southern region of the Balearic Islands will be sampled by 
a SWOT crossover during the fast-sampling phase, this study demonstrates that (i) this region has low 
variability and is characterized by low hydrographic gradients, and (ii) there are limitations to stay in Spanish 
or international waters. Because of this, the authors suggest that the next cruise experiments to validate 
SWOT should be held in the north-western region of the Balearic Islands, a region with more dynamic activity 
and that will be crossed by a swath of SWOT during the fast-sampling phase. 

The objective of Task 2.3 is to optimize the design of multi-platform experiments aimed to validate SWOT 
observations. Observing System Simulation Experiments (OSSEs) have been conducted to evaluate different 
configurations of the in situ observing system, including rosette and underway CTD, gliders, conventional 
satellite nadir altimetry and velocities from drifters. Simulations from high-resolution models have been used 
to simulate the observations and the “ocean truth” to represent fine-scale sea level and surface ocean 
velocities. Several methods of reconstructions have been tested. The first method is an advanced version of 
the classic optimal interpolation used in field experiments, which considers the spatial and the temporal 
variability of the observations. This technique has been applied to reconstruct different configurations with 
the objective to evaluate the best sampling strategy to validate SWOT. Secondly, new algorithms of in situ 
data reconstruction using machine-learning techniques are explored, implemented and benchmarked to be 
compared with the “ocean truth”. Then, the 2-km resolution Western Mediterranean Operational system 
(WMOP) model and data assimilation (Juza et al., 2016; Mourre et al. 2018) has been used to reconstruct 
multivariate three-dimensional (3D) fields from these virtual observations. Finally, the Multiscale Inversion 
for Ocean Surface Topography (MIOST) variational tool has been tested to reconstruct sea surface height and 
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ocean currents at the ocean surface. The capacity of the reconstructed fields to represent the sea level and 
surface current variability of the nature run models at the scales and with the expected accuracy of the future 
SWOT satellite mission are evaluated considering different configurations of in situ observations. 

The analysis focuses on two regions of interest for the Climate Demonstrator in WP7: (i) the western 
Mediterranean Sea and (ii) the Subpolar North West Atlantic. In the western Mediterranean Sea, the target 
area is located within a swath of SWOT, while in the North West Atlantic the region of study includes a 
crossover of SWOT during the fast-sampling phase. These OSSEs contribute to the design of the in situ 
observing systems to support the future calibration and validation of high-resolution SWOT satellite 
measurements. 

3.1. Scientific goals and subtasks 
Objective 1: Optimize the design of a multi-platform in-situ experiment to validate SWOT (subtask 2.3.1) 

Evaluate the impact of different sampling strategies in the reconstruction of fine-scale features comparing 
the simulated and reconstructed observations with the “ocean truth” from the model. For this objective, the 
reconstruction method is an advanced version of the classic optimal interpolation (OI) that considers the 
spatio-temporal variability of the observations (Escudier et al., 2013). This analysis has been done in both 
regions of study and using all models to provide robustness to the results. 

Objective 2: Compare different methods of reconstruction to validate SWOT (subtask 2.3.2) 

Test different methods of reconstruction (optimal interpolation, machine-learning techniques, and WMOP 
assimilation) to reconstruct the simulated observations in the reference configuration (determined as a good 
sampling strategy in subtask 2.3.1). Compare the reconstructed fields with the “ocean truth” through the 
root-mean-square-error (RMSE). This analysis has been done in the Mediterranean and using the eNATL60 
simulated observations.  

Objective 3: Explore the capability of the existing observing system networks to validate SWOT (subtask 
2.3.3) 

We aim to use surface drifters in addition to nadir altimetry to improve the accuracy and resolution of SLA 
maps, usually constructed only from nadir altimetry. We (i) evaluate the performances of the reconstruction 
and (ii) analyse if this merging can be useful for the validation of SWOT. In this experiment we also evaluate 
the impact of tripling the number of drifters and quantify the impact in terms of resolution. This study is done 
in the Mediterranean and for the observations simulated from eNATL60.  

4. Regions of study 
The analysis focuses on two regions of interest for the Climate Demonstrator in WP7: the subpolar northwest 
Atlantic and the western Mediterranean Sea. In the subpolar northwest Atlantic, the region of study includes 
a crossover of SWOT during the fast-sampling phase (Figure 1). In the western Mediterranean Sea, the 
domain is located within a swath of SWOT at the northern part of the Balearic Sea (Figure 1), a region with 
high dynamic activity and already studied by several authors using in situ and remote sensing observations 
(e.g. Pascual et al., 2002; Ruiz et al., 2009; Bouffard et al., 2010; Mason and Pascual, 2013). Within each 
region of study, a smaller sub-region is defined to simulate the in situ observations in different configurations. 
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Figure 1: Regions of study: a SWOT crossover in the subpolar northwest Atlantic and a swath of SWOT at the northern part of the 

Balearic Sea in the western Mediterranean. Figures courtesy of Laura Gómez-Navarro. 

The coordinates of these regions are: 

• Atlantic: longitude [55ºW, 40ºW] and latitude [30ºN, 40ºN] 
o Sub-region: longitude [49.5ºW, 47.5ºW] and latitude [34.5ºN, 36.5ºN] 

• Mediterranean: longitude [5.7ºW, 9.6ºE] and latitude [35.1ºN, 44.4ºN] 
o Sub-region: longitude [1ºE, 3ºE] and latitude [39.5ºN, 41.5ºN] 

5. Nature run models 
In each region of study different high-resolution models are used as "nature run models" depending on the 
objective. These models are assumed to represent the "ocean truth" and are used to simulate the 
observations in different configurations. Model outputs are extracted in a common temporal period between 
1-july-2009 and 30-june-2010. However, the simulated observing systems are representative of a recent 
period (see next section). In the big regions described in the previous section the extracted model outputs 
are at the ocean surface, while in the sub-regions we extracted three-dimensional (3D) fields from 0 to 1000 
m.  

The model outputs used for each region and their characteristics are: 

• Atlantic: CMEMS global reanalysis and eNATL60  
• Mediterranean: CMEMS Mediterranean reanalysis, eNATL60 and WMOP  

5.1. Two CMEMS reanalyses 
• The CMEMS (Copernicus Marine Environment Monitoring Service) global ocean physics reanalysis 

model (GLOBAL_MULTIYEAR_PHY_001_030) used in the Atlantic experiments has a spatial resolution 
of 1/12° and 50 vertical levels. The model component is the Nucleus for European Modelling of the 
Ocean (NEMO) platform driven at the surface by ECMWF ERA-Interim reanalysis. Along-track Sea 
Level Anomaly (SLA), satellite Sea Surface Temperature (SST), Sea Ice Concentration and in situ 
temperature and salinity vertical profiles are assimilated. This product includes daily and monthly 
mean files of temperature, salinity, currents, sea level, mixed layer depth and ice parameters from 
the surface to 5500 m, and covers the period between 1993 and 2019. The model outputs are 
available at https://doi.org/10.48670/moi-00021. 

 

https://doi.org/10.48670/moi-00021
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• The CMEMS Mediterranean Sea physics reanalysis model (Escudier et al., 2020) used in the 
Mediterranean experiments has a spatial resolution of 1/24º and 141 vertical levels. This product is 
generated by a numerical system consisting of a hydrodynamic model supplied by NEMO and a 
variational data assimilation scheme (OceanVAR). It assimilates in situ temperature and salinity 
vertical profiles, satellite along-track SLA and SST. This product includes hourly, daily and monthly 
mean fields of temperature, salinity, currents, sea level and mixed layer depth from the surface to 
5500 m, and covers the period from 1987 to present. For our experiments we use the daily mean 
fields. The model outputs are available at 
https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1. 

5.2. eNATL60 
eNATL60 corresponds to a pair of twin numerical ocean simulations performed in 2019 with the NEMO ocean 
model over the North Atlantic at 1/60° grid resolution by Ocean-Next and the MEOM group1 at IGE2 on 
MareNostrum supercomputer at BSC3 within a PRACE project4. 

The model configuration has been defined in order to model as accurately as possible surface signature of 
oceanic motions of scales down to 15 km in line with the expected effective resolution of SWOT ocean data. 
The choice of the model horizontal and vertical resolution derives from this objective. A particular emphasis 
has also been put on the representation of high frequency motions associated with internal tides as several 
studies suggest that these signals will be prominent in SWOT data at scale <100km. 

The eNATL60 simulations span the North Atlantic from about 6°N up to the polar circle and fully include the 
Gulf of Mexico, the Mediterranean Sea, and the Black Sea (Figure 2): 

• Horizontal grid: 1/60°, 8354×4729 points   
• 0.8 km < Δx < 1.6 km  
• Vertical grid: 300 levels 
• Lateral Boundary Conditions for U,V, T, S & sea-ice: daily, GLORYS12 v1 (1/12°, Mercator Ocean) 
• Lateral Boundary Conditions for tides (SSH, u, v): FES2014 (F. Lyard) 
• Atmospheric forcing: 3-hourly, ERA-interim (ECMWF) 

This model configuration has been implemented and run in two different “free” simulations (no data 
assimilation). The reference experiment eNATL60-BLB002 has been run without explicit tidal forcing from 1-
july-2009 to 6-july-2010; the sensitivity experiment eNATL60-BLBT02 was run with explicit tidal forcing from 
1-july-2009 to 29-october-2010. In this study we use the simulation without tidal forcing. Hourly outputs with 
a horizontal resolution of 1/60º are used to simulate observations. Degraded daily outputs with 1/20º of 
horizontal resolutions are used in subtask 2.3.3 to compare the reconstructed solutions and evaluate them. 
Using a degraded native run allows to work with lighter files and decreases the computation time. In addition, 
the spatio-temporal resolution of the degraded model outputs is closer, and thus more consistent, with the 
MIOST reconstructions (daily maps with a horizontal spacing of 1/20°).  

 

                                                 
1 http://meom-group.github.io 
2 http://www.ige-grenoble.fr 
3 https://www.bsc.es 
4 http://prace-ri.eu/ 

https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1
http://meom-group.github.io/
http://www.ige-grenoble.fr/
https://www.bsc.es/
http://prace-ri.eu/
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Figure 2: Horizontal extent of the eNATL60 domain illustrated by a snapshot of surface current speed. 

5.3. WMOP 
The WMOP (Western Mediterranean OPerational system) model (Juza et al., 2016; Mourre et al., 2018) is a 
regional configuration of the ROMS model in the western Mediterranean Sea, covering from Gibraltar strait 
to Corsica and Sardinia (Figure 3). It is a downscaling of the CMEMS-MED-MFC (Simoncelli et al., 2014) with 
a 2 km horizontal resolution and 32 vertical sigma levels. The model is forced with high-resolution 
atmospheric fields from AEMET (Spanish meteorological agency), with 1-hour and 5-km resolution for the 
operational model and does not include tides. The operational system assimilates SST, along-track SLA, Argo 
temperature and salinity profiles, mooring data and surface current observations from HF-radar using a 
sequential ensemble optimal interpolation (EnOI) method every 3 days (method described in Hernandez-
Lasheras and Mourre, 2018). It runs every day, producing a 3-day forecast of ocean temperature, salinity, sea 
level and currents, which is validated and publicly distributed at www.socib.es and http://thredds.socib.es/.  
The model represents the ocean variability from the (sub-)meso- to the basin- scale.  

The Balearic Islands Coastal Observing and Forecasting System (SOCIB) has also run a series of hindcast 
simulations spanning from 2009 to 2019, using different parent models, initial and boundary conditions and 
momentum and diffusion parameters. The hindcast configuration used in this study has been widely 
validated in different publications (Mourre et al. 2018, Aguiar et al. 2019).  

http://www.socib.es/
http://thredds.socib.es/
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Figure 3: Sea surface height annual mean for 2014 and corresponding surface geostrophic currents from WMOP model. 

6. Simulation of the observations 

6.1. Overview 
Remote sensing and in situ observations have been simulated from the models described in the previous 
section (also called "pseudo-observations" in this report). The observing platforms and the corresponding 
variables that have been simulated are presented in Table 1, together with the model(s) used for the 
simulation, the region in which they have been simulated and the partner that simulated each observation. 

Due to the big size of the high-resolution model outputs, two different datasets were shared between 
partners for each region and model:  

• The 3D dataset includes temperature, salinity and horizontal velocity fields from the surface to 1000 
m depth in the sub-regions described in Section 4. These fields were used to simulate vertical profiles 
of temperature and salinity.  

• The 2D dataset includes SSH and horizontal currents in the whole domain of the regions of study. 
These fields were used to simulate SWOT, nadir altimetry and drifter trajectories in the 
Mediterranean.  
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Table 1. Observing platforms and the corresponding variables simulated. Models used to simulate each observation, region of 
simulation and partner responsible for that simulation.  

Platform Variables Models Regions Partner 

Rosette CTD 
vertical profiles of 
temperature and 

salinity 

CMEMS 
eNATL60 
WMOP 

Mediterranean 
Atlantic CSIC 

Underway CTD 
(uCTD) 

vertical profiles of 
temperature and 

salinity 

CMEMS 
eNATL60 
WMOP 

Mediterranean 
Atlantic CSIC 

Glider 
vertical profiles of 
temperature and 

salinity 

CMEMS 
eNATL60 
WMOP 

Mediterranean 
Atlantic CSIC 

ADCP 

vertical profiles of 
total (geostrophic 
and ageostrophic) 
horizontal velocity 

CMEMS 
WMOP 

Mediterranean 
Atlantic CSIC 

Drifters 

horizontal 
velocities along 

the trajectories at 
0 and 15 m depth 

eNATL60 Mediterranean 
Atlantic Ocean Next 

Nadir altimetry 
along-track SSH 
and associated 

errors 
eNATL60 Mediterranean Ocean Next 

SWOT SSH and 
associated errors eNATL60 Mediterranean 

Atlantic Ocean Next 

Gridded L4 SST 
satellite product 

Sea surface 
temperature and 
associated errors 

eNATL60 Mediterranean SOCIB 

Argo 

vertical profiles of 
temperature and 

salinity and 
associated errors 

eNATL60 Mediterranean SOCIB 

 

6.2. CTD 
Vertical profiles of temperature and salinity were simulated following the same procedure for the three 
platforms equipped with CTDs (rosette CTD, uCTD and gliders). For each CTD profile, defined by its spatial 
coordinates and time, we extracted the corresponding data from the model outputs using a 4D linear 
interpolation in time, depth, latitude and longitude. The function used to do this 4D interpolation is 
“RegularGridInterpolator” from the module “scipy.interpolate” in Python. The variables extracted are 
potential temperature and practical salinity. 

Previous step for eNATL60: The original eNATL60 outputs are in a rotated grid. For this model a previous step 
is needed to linearly interpolate the original fields onto a regular 2D grid for each time step and depth (the 
original spatial resolution of 1/60º is maintained). The Python function used to do this interpolation is 
"griddata" from the module “scipy.interpolate”. 
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In the context of subtask 2.3.1 we have not included instrumental or representative errors to the pseudo-
observations of CTD to ensure that the comparisons done between different configurations are not affected 
by simulated errors and they are only due to the configuration strategy and sampling duration. 

For the reconstruction with WMOP data assimilation (subtask 2.3.2) we add instrumental errors to the CTD 
pseudo-observations of temperature and salinity. These errors are uncorrelated horizontally and vertically 
and they are generated as a random value following a Gaussian distribution with a standard deviation defined 
by the error of the instrument (0.01ºC for temperature, 0.01 for salinity; Gasparin et al., 2019). Note that 
each individual observation has a different (uncorrelated) error.  

6.3. ADCP 
Vertical profiles of total (geostrophic and ageostrophic) horizontal velocity were simulated following the 
same procedure as for CTD observations. For each ADCP profile, defined by its spatial coordinates and time, 
we extracted the corresponding data from the model outputs using a 4D linear interpolation in time, depth, 
latitude and longitude. The function used to do this 4D interpolation is “RegularGridInterpolator” from the 
module “scipy.interpolate” in Python. The variables extracted are zonal and meridional velocities. The 
comparison of ADCP velocity with CTD-derived geostrophic velocity will be conducted as future work. To 
complete the objective of subtask 2.3.1, we have compared the CTD-derived geostrophic velocity with the 
ocean truth.  

6.4. Drifters 
To simulate drifter observations, we have computed Lagrangian trajectories from eNATL60 hourly horizontal 
currents at 15 m depth through Ocean Parcels5. Two different sets of drifter trajectories were simulated 
depending on the objective.  

Set 1: To evaluate the geostrophic velocity calculated from CTD pseudo-observations, we simulated the 
release of 49 drifters evenly spaced within the small sub-regions described in Section 4 in the Mediterranean 
(Figure 4) and Atlantic. The Lagrangian trajectories were computed and saved every 15 min during 6 days 
starting on the 1st of September 2009. The comparison of drifter velocity with CTD-derived geostrophic 
velocity will be conducted as future work. To complete the objective of subtask 2.3.1 we have compared the 
CTD-derived geostrophic velocity with the ocean truth.  

                                                 
5 https://oceanparcels.org/ 

https://oceanparcels.org/
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Figure 4: (a) Release position of the 49 drifters and (b) their trajectories over the 6-day period (from 1 to 7 of September 2009) 

computed with Ocean Parcels using currents at 15 m depth from the eNATL60 simulation in the Mediterranean. The SSH field is 
shown as background: (a) on the 1st of September and (b) averaged over the 6-day period. 

 
Set 2: For the reconstruction of nadir altimetry SLA using drifters through the MIOST tool (subtask 2.3.3), 146 
particles were evenly space released within the Mediterranean study region every 3 months during 1 year 
(Figure 5). The release dates for the 4 groups of drifters are: 1 July 2009, 1 October 2009, 1 January 2010 and 
1 April 2010, respectively. The release positions form a regular grid separated by 45 times the model 
resolution (45/60º = 0.75º). The Lagrangian trajectories were computed and saved every 1 h during 4 months 
using horizontal currents at 15 m depth. Particles were removed from the set when they reached the regional 
boundaries (Figure 6).  
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Figure 5: Initial location (black dots) and trajectories (one colour for each drifter trajectory) of the 105 Lagrangian particles that 

were released in the first group and stayed within the domain for the first period (1 July 2009 to 1 October 2009). Trajectories were 
computed with Ocean Parcels using horizontal currents at 15 m from the eNATL60 simulation. The averaged SSH field is shown as 

background.  

 
Figure 6: Example of the release position (black dots) and trajectories of 8 Lagrangian particles that left the domain in the 3rd 

month (2009-08) in the first group. The averaged SSH field is shown as background.  
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6.5. Nadir altimetry 
Along-track nadir altimetry SSH and SLA fields have been extracted from the eNATL60 model in the 
Mediterranean. The observations have been simulated along tracks of Jason3, Altika, Cryosat-2 (c2n), H2B, 
Sentinel-3A and Sentinel-3B from 01-07-2020 to 31-12-2020, and from 01-01-2021 to 30-06-2021. Note that 
even if the model simulations are run in a common temporal period between 01-07-2009 and 30-06-2010, 
the simulated altimetric observing network represents the observing system in a recent period.  

The along-track interpolation needed to extract the altimetric pseudo-observations is made with the 
"gonzag" software developed by Laurent Brodeau, openly available at https://github.com/brodeau/gonzag. 
This software interpolates in space and time 2D non-regular gridded model outputs onto satellite tracks 
(Figure 7). The 2D space interpolation is performed through the bilinear method. 

 

 
Figure 7: Example of interpolated SSH along Jason3 tracks (3-day period). 

 
The simulated observations of SSH from eNATL60 exhibits rapid changes in sea level across the basin in time 
periods of 2-3 days. As explained by Ciani et al. (2021), this high-frequency variability is caused by rapidly 
moving atmospheric pressure disturbances causing storm surges and inverse barometer effects. These rapid 
changes in SSH cannot be handled by either the MIOST mapping or the WMOP data assimilation 
reconstruction. With real altimetry observation, this large-scale high-frequency variability is removed using 
the Dynamic Atmospheric Correction (DAC) derived from atmospheric forcing (Carrere et al. 2016). 

Ciani et al. (2021) concluded that applying the DAC correction on their simulation was not satisfactory 
because significant residuals remained. They solved the issue filtering the large spatial scale of the model 
field using a Loess filter with a cutoff-length of 600 km before calculating the pseudo-observations. In our 
study 600 km is approximately the size of our basin, because of this we remove for each model time the 
spatial mean over the basin to filter the large spatial scales. The altimeter pseudo-observations are therefore 
sampled from the following calculated SLA field: 

https://github.com/brodeau/gonzag
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SLA(x,t) = SSH(x,t) – MDT(x) – M(t) 

with MDT(x) the time mean over the 1-year period (2009-07-01 to 2010-06-31) and M(t) the spatial mean 
over the basin at each hourly model output (as a proxy for filtering out large spatial scales). Afterwards, to 
reconstruct the complete SSH signal, we add to the reconstructed SLA the MDT(x) and M(t). 

6.6. Sea surface temperature 
To apply the reconstruction with model data assimilation, sea surface temperature (SST) observations were 
simulated from eNATL60 model outputs in the Mediterranean. For the date of the analysis the daily mean 
surface temperature was considered. The field was first smoothed, using a radius of 10 km to filter out very 
small structures and simulate a similar effective resolution as the SST L4 product generally used in previous 
experiments6. Secondly, we subsampled the field, considering one observation every 10 km, as it is done in 
the WMOP operational system. Finally, we considered an SST observation noise generated randomly using a 
Gaussian distribution with standard deviation equal to the observation error (instrumental error 0.25ºC and 
representative error 0.5ºC). 

6.7. Argo profiles 
To implement the reconstruction based on model data assimilation, Argo temperature and salinity profiles 
were simulated from eNATL60 model outputs in the Mediterranean. The methodology consisted of linearly 
interpolating the model outputs to the position of the real floats available at present in the region of study 
in a centred time window of 5 days. We considered an observation noise generated randomly using a 
Gaussian distribution with standard deviation equal to the observation error (temperature: instrumental 
error 0.25ºC, representative error 0.1ºC; salinity: instrumental error 0.05, representative error 0.01). We 
vertically averaged the observations in bins, obtaining a single observation value per WMOP model grid cell. 
The variance of the observations in a grid cell is added to the observation error (see Hernández-Lasheras and 
Mourre 2018 for more information). 

6.8. SWOT 
The 2020 version of the SWOT Simulator7 was used to simulate SWOT observations from eNATL60 model 
outputs in the Mediterranean and Atlantic study regions. Two different configurations of SWOT were 
simulated: the calval phase (fast-sampling) and the science phase (see Figures 8-11). SWOT pseudo-
observations have not been used in the analysis shown in this deliverable because we perform the 
comparisons with the ocean truth provided by the model. However, in future work we may use the simulated 
SWOT observations to test, for instance, reconstruction methods based on machine-learning techniques.  

 

                                                 
6 https://podaac.jpl.nasa.gov/dataset/JPL-L4UHfnd-GLOB-MUR 
7 https://github.com/CNES/swot_simulator 

https://podaac.jpl.nasa.gov/dataset/JPL-L4UHfnd-GLOB-MUR
https://github.com/CNES/swot_simulator
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Figure 8: SWOT calval phase (fast-sampling) repeating trajectories. Black boxes show the study regions. 

 

 
Figure 9: SWOT science phase trajectories. Black boxes show the study regions. 

 

 
Figure 10: SWOT tracks in the Mediterranean study region: (left) calval phase and (right) science phase. 
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Figure 11:  SWOT tracks in the Atlantic study region: (left) calval phase and (right) science phase. 

7. Configurations 

7.1. Configurations to evaluate different sampling strategies 

Overview 
Several configurations of the in situ experiment are simulated to evaluate the best sampling strategy to 
reconstruct fine-scale (~20 km) currents and validate SWOT during the fast-sampling phase. The reference 
configuration is similar to the PRE-SWOT cruise experiment sampling strategy (Barceló-Llull et al., 2021) in 
both regions of study within the selected sub-regions. Then, additional configurations are analysed modifying 
this reference setting to evaluate improvements in the sampling strategy. An overview of these 
configurations is shown in Tables 2 and 3, and the details of each configuration are presented in the next 
subsections. 
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Table 2. Overview of the different configurations simulated. Each configuration has been simulated for both the Mediterranean and 
Atlantic regions, with some differences in configurations 2a-d to adapt the configuration to each region. 

Configuration Start date Instrument Horizontal 
resolution 

Minimum 
depth [m] 

Maximum 
depth [m] 

Vertical 
resolution 

[m] 

Reference 1-9-2009 CTD 10 km 5 1000 0.5 

1 1-9-2009 CTD 10 km 5 500 0.5 

2a 1-9-2009 CTD 5 km 5 1000 0.5 

2b 1-9-2009 CTD 8 km 5 1000 0.5 

2c 1-9-2009 CTD 12 km 5 1000 0.5 

2d 1-9-2009 CTD 15 km 5 1000 0.5 

3a 1-9-2009 uCTD 6 km 5 500 0.5 

3b 1-9-2009 uCTD 2.5 km 5 200 0.5 

4 1-1-2010 CTD 10 km 5 1000 0.5 

5 1-9-2009 glider CTD 6 km 30 500 1 

 
 
Table 3. Sampling duration of each configuration in each region of study. 
 

Configuration Region Sampling duration 
[days] 

Reference 
Mediterranean 4.3125 

Atlantic 4.3125 

1 
Mediterranean 3.0625 

Atlantic 3.0625 

2a 
Mediterranean 3.4375 

Atlantic 3.4375 

2b 
Mediterranean 4.0 

Atlantic 4.0 

2c 
Mediterranean 3.0625 

Atlantic 4.6875 

2d 
Mediterranean 2.4375 

Atlantic 5.1875 

3a 
Mediterranean 1.75 

Atlantic 1.75 

3b 
Mediterranean 1.75 

Atlantic 1.75 
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Configuration Region Sampling duration 
[days] 

4 
Mediterranean 4.3125 

Atlantic 4.3125 

5 
Mediterranean 3.625 

Atlantic 3.625 
 

General assumptions 
Some assumptions were made to simulate the different sampling strategies:  

• The research vessel starts the sampling in the northwest corner of the sampling domain, it samples 
the first zonal transect from west to east, moves southward to the next zonal transect and samples 
the second transect from east to west; repeat for the other transects. 

• We assume that the time needed to do a rosette CTD cast down to 500 m is 30 min, and 60 min for 
a cast down to 1000 m.  

• We assume that during the CTD cast the water column properties do not change and we extract the 
model data corresponding to the time of the cast launch. 

• ADCP observations in strategies including rosette CTD casts: for consistency with what is done in 
multi-platform experiments (Barceló-Llull et al., 2021), we exclude the ADCP observations during the 
CTD casts (ship stopped) and also in a distance smaller than the resolution of the ADCP profiles (time 
of ship decelerating/accelerating in real cruises). 

• For the sampling strategy with underway CTD we assume constant ship velocity, also during ship 
turns, and turns of 90º. 

Reference configuration 
● Coordinates defining the CTD grid (Figures 12 and 13):  

o Med first CTD (top-left) = (1.45ºE, 40.415ºN) 
o Atlantic first CTD (top-left) = (48.70ºW, 35.25ºN) 

● Start date: 1 September 2009 
● Rosette CTD casts:  

o Number of zonal transects: 7 
o Number of casts in each transect: 9 
o Horizontal resolution of CTD profiles: 10 km 
o Vertical axis: from 5 to 1000 m depth, with a vertical spacing of 0.5 m 

● ADCP current velocities:  
o Continuously recorded at a transit speed of 8 knots between CTD casts  
o We exclude ADCP data during the CTD casts (see “General assumptions”)  
o Horizontal resolution of ADCP profiles: 5 min (1.2 km) 
o Vertical axis: from 20 to 600 m depth, with a vertical spacing of 8 m 
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Figure 12: Reference configuration in the Mediterranean. (left) Red dots represent CTD profiles within a swath of SWOT during the 

fast-sampling phase (blue bands). (right) CTD profiles with date and time of CTD cast release. 

 

 
Figure 13: Reference configuration in the Atlantic. (left) Black dots represent CTD profiles within a crossover of SWOT during the 

fast-sampling phase (blue bands). (right) CTD profiles with date and time of CTD cast release. 

Configuration 1 
● Coordinates defining the CTD grid:  

o Med first CTD (top-left) = (1.45ºE, 40.415ºN) 
o Atlantic first CTD (top-left) = (48.70ºW, 35.25ºN) 

● Start date: 1 September 2009 
● Rosette CTD casts (Figure 14):  

o Number of zonal transects: 7 
o Number of casts in each transect: 9 
o Horizontal resolution of CTD profiles: 10 km 
o Vertical axis: from 5 to 500 m depth, with a vertical spacing of 0.5 m 
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● ADCP current velocities:  
o Continuously recorded at a transit speed of 8 knots between CTD casts  
o We exclude ADCP data during the CTD casts  
o Horizontal resolution of ADCP profiles: 5 min (1.2 km) 
o Vertical axis: from 20 to 600 m depth, with a vertical spacing of 8 m 

 

 
Figure 14:  Configuration 1 in the Mediterranean. (left) Red dots represent CTD profiles within a swath of SWOT during the fast-

sampling phase (blue bands). (right) CTD profiles with date and time of CTD cast release. 

Configuration 2 
● oordinates defining the CTD grid (Figures 15-22):  

o Med first CTD (top-left):  
▪ Med start point 5 km: (1.45+0.23ºE, 40.415-0.13ºN) = (1.68ºE, 40.285ºN) 
▪ Med start point 8 km: (1.45+0.093ºE, 40.415-0.055ºN) = (1.543ºE, 40.36ºN) 
▪ Med start point 12 km: (1.45ºE, 40.415ºN)  
▪ Med start point 15 km: (1.45ºE, 40.415ºN)  

o Atlantic first CTD (top-left): the start point is adjusted in the 12 km and 15 km 
configurations to have the grid centered.  

▪ Atl start point 5 km: (48.70ºW, 35.25ºN) 
▪ Atl start point 8 km: (48.70ºW, 35.25ºN) 
▪ Atl start point 12 km: (48.78ºW, 35.25ºN) 
▪ Atl start point 15 km: (48.91ºW, 35.35ºN) 

● Start date: 1 September 2009 
● Rosette CTD casts:  

o Number of zonal transects: 7, except:  
▪ Med, 12 km: 6 
▪ Med, 15 km: 5 

o Number of casts in each transect: 9, except: 
▪ Med, 12 km: 7 (To stay in deep waters)  
▪ Med, 15 km: 6 (To stay in deep waters) 

o Horizontal resolution of CTD profiles: 5, 8, 12, 15 km (2a, 2b, 2c, 2d, respectively) 
o Vertical axis: from 5 to 1000 m depth, with a vertical spacing of 0.5 m 



 
 
 
 

13 
 

● ADCP current velocities:  
o Continuously recorded at a transit speed of 8 knots between CTD casts  
o We exclude ADCP data during the CTD casts (see assumptions)  
o Horizontal resolution of ADCP profiles: 5 min (1.2 km) 
o Vertical axis: from 20 to 600 m depth, with a vertical spacing of 8 m 

 

 
Figure 15:  Configuration 2a (5 km) in the Mediterranean. (left) Red dots represent CTD profiles within a swath of SWOT during the 
fast-sampling phase (blue bands), blue box delimits the reference configuration domain. (right) CTD profiles with date and time of 

the cast release. 

 
Figure 16:  Configuration 2a (5 km) in the Atlantic. (left) Black dots represent CTD profiles within a crossover of SWOT during the 

fast-sampling phase (blue bands). (right) CTD profiles with date and time of the cast release. 
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Figure 17:  Configuration 2b (8 km) in the Mediterranean. (left) Red dots represent CTD profiles within a swath of SWOT during the 
fast-sampling phase (blue bands), blue box delimits the reference configuration domain. (right) CTD profiles with date and time of 

the cast release. 
 

 
Figure 18:  Configuration 2b (8 km) in the Atlantic. (left) Black dots represent CTD profiles within a crossover of SWOT during the 

fast-sampling phase (blue bands). (right) CTD profiles with date and time of the cast release. 
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Figure 19:  Configuration 2c (12 km) in the Mediterranean. (left) Red dots represent CTD profiles within a swath of SWOT during the 
fast-sampling phase (blue bands), blue box delimits the reference configuration domain. (right) CTD profiles with date and time of 

the cast release. 
 

 
Figure 20:  Configuration 2c (12 km) in the Atlantic. (left) Black dots represent CTD profiles within a crossover of SWOT during the 

fast-sampling phase (blue bands). (right) CTD profiles with date and time of the cast release. 
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Figure 21:  Configuration 2d (15 km) in the Mediterranean. (left) Red dots represent CTD profiles within a swath of SWOT during the 
fast-sampling phase (blue bands), blue box delimits the reference configuration domain. (right) CTD profiles with date and time of 

the cast release. 

 
Figure 22:  Configuration 2d (15 km) in the Atlantic. (left) Black dots represent CTD profiles within a crossover of SWOT during the 

fast-sampling phase (blue bands). (right) CTD profiles with date and time of the cast release. 

Configuration 3 
● Top-left start point:  

o Med = (1.45ºE, 40.415ºN) 
o Atl = (48.70ºW, 35.25ºN) 

● Start date: 1 September 2009 
● uCTD profiles (Figures 23 and 24):  

o Continuously recorded at a transit speed of 8 knots  
o Number of zonal transects: 7 
o Longitude of the zonal transects: 80 km 
o Separation between zonal transects: 10 km  
o Configuration 3a: 

▪ Horizontal resolution of uCTD profiles: 6 km 
▪ Vertical axis: from 5 to 500 m depth, with a vertical spacing of 0.5 m 
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o Configuration 3b: 
▪ Horizontal resolution of uCTD profiles: 2.5 km 
▪ Vertical axis: from 5 to 200 m depth, with a vertical spacing of 0.5 m 

● ADCP current velocities:  
o Continuously recorded at a transit speed of 8 knots  
o Horizontal resolution of ADCP profiles: 5 min (1.2 km) 
o Vertical axis: from 20 to 600 m depth, with a vertical spacing of 8 m 

 
Figure 23:  Configuration 3a in the Mediterranean. (left) Red dots represent underway CTD profiles within a swath of SWOT during 

the fast-sampling phase (blue bands). (right) Underway CTD profiles with initial and final dates. 

 
Figure 24:  Configuration 3b in the Mediterranean. (left) Red dots represent underway CTD profiles within a swath of SWOT during 

the fast-sampling phase (blue bands). (right) Underway CTD profiles with initial and final dates. 
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Configuration 4 
● Coordinates defining the CTD grid:  

o Med first CTD (top-left) = (1.45ºE, 40.415ºN) 
o Atlantic first CTD (top-left) = (48.70ºW, 35.25ºN) 

● Start date: 1 January 2010 
● Rosette CTD casts (Figure 25):  

o Number of zonal transects: 7 
o Number of casts in each transect: 9 
o Horizontal resolution of CTD profiles: 10 km 
o Vertical axis: from 5 to 1000 m depth, with a vertical spacing of 0.5 m 

● ADCP current velocities:  
o Continuously recorded at a transit speed of 8 knots between CTD casts  
o We exclude ADCP data during the CTD casts  
o Horizontal resolution of ADCP profiles: 5 min (1.2 km) 
o Vertical axis: from 20 to 600 m depth, with a vertical spacing of 8 m 

 

 
Figure 25: Configuration 4 in the Mediterranean. (left) Red dots represent CTD profiles within a swath of SWOT during the fast-

sampling phase (blue bands). (right) CTD profiles with date and time of CTD cast release. 

Configuration 5 
● Start date: 1 September 2009 
● 7 gliders (Figures 26 and 27): 

o Each one sampling a zonal transect from east to west and simultaneously 
o Constant glider velocity of 0.25 m/s 
o End point of the northern glider transect (north-west):  

▪ Med = (1.45ºE, 40.415ºN), same as the first CTD in the reference configuration.  
▪ Atl = (48.70ºW, 35.25ºN) 

o Length of glider transects: 80 km 
o Separation between transects: 10 km 
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o Horizontal resolution of the glider CTD profiles: 6 km 
o Vertical axis: from 30 to 500 m depth, with a vertical spacing of 1 m (as in L2 glider data, 

e.g. PRE-SWOT) 

 
Figure 26: Configuration 5 in the Mediterranean. (left) Red dots represent CTD profiles from 7 gliders sampling simultaneously 7 

zonal lines from east to west. (right) Glider CTD profiles with initial and final dates. 
 

 
 

Figure 27: Configuration 5 in the Atlantic. (left) Black dots represent CTD profiles from 7 gliders sampling simultaneously 7 zonal 
lines from east to west. (right) Glider CTD profiles with initial and final dates. 
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7.2. Configurations to test different reconstruction methods  
 
To achieve the second objective, we planned to select two common configurations in the Mediterranean to 
apply the reconstruction methods:  

• the reference configuration 
• the best configuration identified in subtask 2.3.1 

As the reference configuration is a sampling strategy that provides good reconstructed fields in the 
Mediterranean (see Section 10), we evaluate the different methods of reconstruction only for the reference 
configuration.  

7.3. Configurations to apply the MIOST tool 
To accomplish objective 3, we merge with the MIOST tool (see next section) the velocity estimated from 
simulated drifters with simulated observations of the conventional nadir altimetry to compute daily maps of 
SLA and surface currents with a grid resolution of 1/16°. In a first experiment we only use nadir altimetry. 
Then we add a number of drifters representative of the coverage at present, and finally we triple that number 
of drifters. All the experiments are compared to each other to quantify the impact of each observation 
system. We also compare the reconstructed fields from each experiment to the ocean truth.  

8. Reconstruction methods 

8.1. Optimal interpolation  
Optimal Interpolation is a powerful method of data analysis that has been widely used by oceanographers 
and meteorologists to estimate values of geophysical variables on a regular grid from irregularly sampled 
observations (e.g. Bretherton et al., 1976; Davis, 1985; Le Traon, 1990, Gomis et al., 2001; Pascual et al., 
2004, 2017; Escudier et al., 2013; Melnichenko et al., 2014, Barceló-Llull et al., 2017, 2021; Ruiz et al., 2019). 
This technique determines a point-wise estimate of the interpolated field with minimum ensemble mean-
square error, considering information about the variances and correlation functions of the estimated field 
and the observational data. This method has the advantage to consider error information for each 
observational platform.  

Spatial optimal interpolation  
The optimal interpolation algorithm used in field experiments to interpolate CTD and ADCP observations 
considers the spatial variability and correlation scale of the measurements (e.g., Rudnick, 1996; Pascual et 
al., 2004; Barceló-Llull et al., 2017, 2021; Ruiz et al., 2019). With this approach the observations collected 
during the sampling period are considered quasi-synoptic, i.e., they are assumed to represent a stationary 
state of the ocean at the scales resolved by the sampling. For clarity, from here on this method will be 
referred to as "spatial optimal interpolation". 

In a first analysis, temperature (T) and salinity (S) simulated observations were interpolated onto a regular 
3D grid using (i) linear interpolation to interpolate vertically each profile with a vertical spacing of 5 m and 
(ii) spatial optimal interpolation to interpolate horizontally onto a grid with a spatial resolution of 2 km and 
applying spatial correlation scales of 25 km (semimajor and semiminor axes of the 2D Gaussian function used 
to fit the data covariance). The new grid was defined for each configuration by the (longitude, latitude) limits 
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of the original CTD grid and considering a horizontal resolution of 2 km. The mean fields were assumed to be 
planar and the uncorrelated noise for the interpolation of temperature and salinity was assumed to be 3% of 
the signal energy (Barceló-Llull et al., 2021). With the reconstructed T and S 3D fields, we computed the 
dynamic height (DH) and the corresponding geostrophic velocity (ugeo, vgeo) at the ocean upper layer (5 m 
for the configurations with CTD/uCTD, 30 m for the glider configuration).  

After reconstructing all configurations with the spatial optimal interpolation, we compared the reconstructed 
DH to the model SSH (ocean truth). First, we needed to define the ocean truth and, as the reconstructed field 
is supposed to represent a stationary state of the ocean during the sampling period, we performed a 
sensitivity test. We compared the reconstructed DH to the model SSH on the first, last and central date of 
the sampling period, and to the averaged field. The results revealed high sensitivity to the field used as the 
ocean truth.  The comparison was done in the same domain for all configurations (domain of configuration 
2a), to avoid sensitivity of the results to the domain size. We removed the spatial mean of DH and SSH to the 
corresponding fields to compare anomalies. Model fields were linearly interpolated to the grid of the 
reconstruction. 

This analysis highlighted the need to use an advanced version of the optimal interpolation that considers the 
spatio-temporal variability and correlation scale of the observations and from which the resulting map 
represents a specific date of the sampling period. This method is used to reconstruct altimetry observations 
(e.g. Escudier et al., 2013) and is explained in the next section.  

Spatial correlation scale analysis  
The spatial correlation scale was defined after calculating the empirical correlation from T and S pseudo-
observations at 100 m depth (approach followed by Barceló-Llull et al., 2021) for each model and region and 
for the reference configuration (Figures 28 and 33). We concluded that using correlation scales of 25 km was 
a good compromise between the results obtained from the different models in both regions. 

We also calculated the empirical correlation from the original model data averaged for the period of the 
configuration and including all data inside the configuration domain (Figures 29 and 34). We found consistent 
results with both approaches, and a sensitivity to the size of the domain. Using model data in bigger domains 
we obtain higher spatial correlation scales (Figures 30-31 and 35-36). Also, the results are sensitive to the 
sampling period. With pseudo-observations from configuration #4 (same configuration as the reference but 
in January) we obtain lower spatial correlation scales (Figures 32 and 37). This is expected because in winter 
the structures are smaller (reduced Rossby radius of deformation). On the other hand, performing the same 
analysis in the Mediterranean and Atlantic study regions revealed similar results: ~25 km in the 
Mediterranean vs. ~20 km in the Atlantic.  
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Empirical correlation in the Mediterranean 

 

Figure 28: Empirical correlation calculated from the reference configuration pseudo-observations at 100 m depth for each model 
(CMEMS, WMOP, eNATL60). Correlation between data pairs that are separated by a defined distance (x-axis) and considering a bin 

size of 5 km for temperature and salinity. Grey lines represent four Gaussian functions with standard deviations of 15, 20, 25, and 30 
km. Considering all models, the Gaussian function that resembles better the empirical correlations is the Gaussian with a standard 

deviation of 25 km.  

 

Figure 29: Empirical correlation calculated from the original model data averaged for the period of the configuration and including 
all data inside the domain of the configuration. Correlation between data pairs that are separated by a defined distance (x-axis) and 
considering a bin size of 5 km for temperature and salinity. Grey lines represent four Gaussian functions with standard deviations of 
15, 20, 25, and 30 km. Considering all models, the Gaussian function that resembles better the empirical correlations is the Gaussian 

with a standard deviation of 25 km.  
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Figure 30: Map in the Mediterranean with the reference configuration domain (magenta box) and the bigger domain (blue box). 

 

Figure 31: Empirical correlation calculated from the original model data averaged for the period of the reference configuration and 
including all data inside the bigger domain (blue box in the map). Correlation between data pairs that are separated by a defined 
distance (x-axis) and considering a bin size of 5 km for temperature and salinity. Grey lines represent four Gaussian functions with 
standard deviations of 15, 20, 25, and 30 km. The empirical correlation depends on the size of the domain (see Figure 29 for the 

results in the reference domain (magenta box in the map)).
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Figure 32: Empirical correlation calculated from the configuration #4 (as the reference configuration but in January) pseudo-
observations at 100 m depth for each model (CMEMS, WMOP, eNATL60). Correlation between data pairs that are separated by a 

defined distance (x-axis) and considering a bin size of 5 km for temperature and salinity. Grey lines represent four Gaussian 
functions with standard deviations of 15, 20, 25, and 30 km.  

 

Empirical correlation in the Atlantic 

  

Figure 33: Empirical correlation calculated from the reference configuration pseudo-observations at 100 m depth for each model 
(CMEMS, eNATL60). Correlation between data pairs that are separated by a defined distance (x-axis) and considering a bin size of 5 

km for temperature and salinity. Grey lines represent four Gaussian functions with standard deviations of 15, 20, 25, and 30 km. 
Considering all models, the Gaussian function that resembles better the empirical correlations is the Gaussian with a standard 

deviation of 20 km, different than in the Mediterranean.  
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Figure 34: Empirical correlation calculated from the original model data averaged for the period of the configuration and including 
all data inside the domain of the configuration. Correlation between data pairs that are separated by a defined distance (x-axis) and 
considering a bin size of 5 km for temperature and salinity. Grey lines represent four Gaussian functions with standard deviations of 
15, 20, 25, and 30 km. Considering all models, the Gaussian function that resembles better the empirical correlations is the Gaussian 

with a standard deviation of 20 km, different than in the Mediterranean.  

 

Figure 35: Map in the Atlantic with the reference configuration domain (magenta box) and the bigger domain (blue box).
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Figure 36: Empirical correlation calculated from the original model data averaged for the period of the reference configuration and 
including all data inside the bigger domain (blue box in the map). Correlation between data pairs that are separated by a defined 
distance (x-axis) and considering a bin size of 5 km for temperature and salinity. Grey lines represent four Gaussian functions with 
standard deviations of 15, 20, 25, and 30 km. The empirical correlation depends on the size of the domain (see Figure 34 for the 

results in the reference domain (magenta box in the map)). 

 

Figure 37: Empirical correlation calculated from the configuration #4 (as the reference configuration but in January) pseudo-
observations at 100 m depth for each model (CMEMS, eNATL60). Correlation between data pairs that are separated by a defined 
distance (x-axis) and considering a bin size of 5 km for temperature and salinity. Grey lines represent four Gaussian functions with 

standard deviations of 15, 20, 25, and 30 km. 

Spatio-temporal optimal interpolation 
The spatial optimal interpolation used to reconstruct in situ observations in field experiments only considers 
the spatial variability of the measurements and assumes quasi-synopticity at the scales resolved by the 
sampling (e.g., Rudnick, 1996; Pascual et al., 2004; Barceló-Llull et al., 2017, 2021; Ruiz et al., 2019). However, 
if the structures evolve during the sampling period, the reconstruction of the observations may introduce 
errors due to the lack of synopticity. For this analysis, we use an advanced version of the optimal interpolation 
that considers the spatio-temporal variability and correlation scale of the observations and from which the 
resulting map represents a specific date of the sampling period. This method is applied to reconstruct 
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altimetry observations (e.g. Escudier et al., 2013) and it includes the time coordinate of each observation and 
the temporal correlation scale in the correlation function of the optimal interpolation. This function is used 
to compute correlations between observational points to determine the weights for the data interpolation. 
Then, to compute the correlation between grid and observational points, we use the same correlation 
function assuming that the interpolation maps the observations on the central date of the sampling (Table 
4). To determine the appropriate temporal correlation scale, we performed an extensive analysis 
summarized in the next subsection. 

We applied the spatio-temporal optimal interpolation to reconstruct all configurations simulated in both 
regions from all models. Temperature and salinity pseudo-observations were interpolated onto a regular 3D 
grid using (i) linear interpolation to interpolate vertically each profile with a vertical spacing of 5 m and (ii) 
spatio-temporal optimal interpolation to interpolate horizontally onto a grid with a spatial resolution of 2 
km. We used spatial correlation scales of 20 km (~scales resolved by SWOT, Barceló-Llull et al., 2021) and a 
temporal correlation scale of 10 days. The new grid was defined for each configuration by the (longitude, 
latitude) limits of the original CTD grid and considering a horizontal resolution of 2 km. The mean fields were 
assumed to be planar and the uncorrelated noise for the interpolation of temperature and salinity was 
assumed to be 3% of the signal energy (Barceló-Llull et al., 2021). The interpolation was done on the central 
date of the sampling, which is different for each configuration (See Table 4).  

Table 4. Reconstruction date for each configuration in each region. 
 

Configuration Region Reconstruction 
date 

Reference 
Mediterranean 2009-09-03 03:00 

Atlantic 2009-09-03 03:00 

1 
Mediterranean 2009-09-02 12:00 

Atlantic 2009-09-02 12:00 

2a 
Mediterranean 2009-09-02 18:00 

Atlantic 2009-09-02 18:00 

2b 
Mediterranean 2009-09-03 00:00 

Atlantic 2009-09-03 00:00 

2c 
Mediterranean 2009-09-02 12:00 

Atlantic 2009-09-03 09:00 

2d 
Mediterranean 2009-09-02 06:00 

Atlantic 2009-09-03 15:00 

3a 
Mediterranean 2009-09-01 21:00 

Atlantic 2009-09-01 21:00 

3b 
Mediterranean 2009-09-01 21:00 

Atlantic 2009-09-01 21:00 

4 
Mediterranean 2010-01-03 03:00 

Atlantic 2010-01-03 03:00 

5 
Mediterranean 2009-09-02 19:30 

Atlantic 2009-09-02 19:30 
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With the reconstructed T and S 3D fields, we computed the dynamic height (DH) and the corresponding 
geostrophic velocity (ugeo, vgeo) at the ocean upper layer (5 m for the configurations with CTD/uCTD, 30 m 
for the glider configuration), following the same procedure that will be applied to validate SWOT with real 
observations during the fast-sampling phase (Barceló-Llull et al., 2021).  

The reconstructed DH is compared to the model SSH on the interpolation date (ocean truth). The comparison 
is done in the same domain for all configurations (domain of configuration 2a), to avoid sensitivity of the 
results to the domain size. The spatial mean of DH and SSH over this domain was subtracted to the 
corresponding fields to compare anomalies. Model fields were linearly interpolated to the date and grid of 
the reconstruction. In the same way, the reconstructed geostrophic velocity magnitude is compared to the 
horizontal velocity magnitude from the model on the interpolation date (ocean truth). Both comparisons are 
done through the RMSE-based score (RMSEs), a metric used in the ocean data challenge8. 

Temporal correlation scale analysis 
We performed an extensive analysis to find the temporal correlation scale for the spatio-temporal optimal 
interpolation. After testing different methods without finding the expected results, we concluded that the 
analysis of the spatial and temporal correlation scales cannot be done separately, as both parameters work 
together in the optimal interpolation algorithm. We finally made a cross-validation to find the best 
combination.  

Previous tests 
Previously we performed the following tests: 

(i) Calculate spatial and temporal empirical correlations separately from pseudo-observations. We 
observed a contamination of the spatial correlation in the temporal correlation, not observed 
otherwise. This may indicate a dominance of the spatial correlation over the temporal correlation 
(Figure 38). However, with this approach we were mixing both scales: we were evaluating different 
correlation functions from pseudo-observations sampled at different locations and times. 

(ii) Calculate spatial and temporal correlation functions separately from model outputs. This approach 
was aimed to solve the issue of the pseudo-observations mixing temporal and spatial variability. It 
consists of: 

• Calculate the spatial correlation function (Ls) including all model data within the sampling domain at 
each time step during the sampling period, and adjust the correlation function to a Gaussian (we use 
scipy.optimize.curve_fit in Python) to obtain its standard deviation, which is the spatial correlation 
scale. Average the Ls values obtained for each time step.  

• Calculate Lt in each grid point during a time window defined by the sampling period: in one grid point 
extract T and S values during the time window and calculate the corresponding temporal correlation 
function (bin size = 0.125 days = 3 h; bin array from 0.0625 days = 1.5 h). Adjust a Gaussian function 
and obtain the standard deviation, which corresponds to the temporal correlation scale. The analysis 
was done for all grid points within the sampling domain.  

                                                 
8 https://github.com/ocean-data-
challenges/2020a_SSH_mapping_NATL60/blob/master/notebooks/example_data_eval.ipynb 

https://github.com/ocean-data-challenges/2020a_SSH_mapping_NATL60/blob/master/notebooks/example_data_eval.ipynb
https://github.com/ocean-data-challenges/2020a_SSH_mapping_NATL60/blob/master/notebooks/example_data_eval.ipynb
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Figure 38: Empirical temporal correlation in the Mediterranean from T and S pseudo-obs at 100 m depth generated from 

eNATL60. The spatial correlation dominates the temporal correlation of the pseudo-observations sampled in different location 
and times.  

 
We obtained the following results for Ls: 

• Domain and period of the reference configuration in the Mediterranean (from 2009-09-01 00:00 to 
2009-09-05 07:30). T and S data from eNATL60 at 100 m depth. Bin size: 5 km; bin array from 10 to 
70 km. To have a better fit with a Gaussian, we adjust the correlation function while it goes from 1 
to 0. 

o L spatial from T model data: 24.24 士 2.16 km  
o L spatial from S model data: 21.90 士 0.45 km 

• Domain and period of the configuration 4 in the Med (from 2010-01-01 00:00 to 2010-01-05 07:30). 
T and S data from eNATL60 at 100 m depth. Bin size: 5 km; Bin array from 10 to 70 km. To have a 
better fit with a Gaussian, we adjust the correlation function while it goes from 1 to 0. 

o L spatial from T model data: 16.95 士 1.66 km  
o L spatial from S model data: 13.79 士 1.53 km 

The results for Lt were very different between different location within the domain (Figure 39). To 
improve the results, we smoothed the model data before calculating Lt so that only scales higher 
than Ls (~15km) were considered. The maps still showed high variability of Lt. 
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Figure 39: Map with the temporal correlation scale obtained in each grid point within the sampling domain during the sampling 

period (reference configuration), from temperature and salinity model data, respectively. To have a better fit with a Gaussian, we 
adjust the correlation function while it goes from 1 to 0. High Lt means higher correlation of the data at this location during a longer 

period.  
 

(iii) Calculate the temporal correlation scale from SSH in the western Mediterranean.  

• No filtering the original SSH 

We calculated the temporal correlation of SSH from eNATL60 for the period of the reference 
configuration and for the whole western Mediterranean. The methodology consists of computing the 
correlation function at each grid point considering data during the period of the reference configuration. 
We computed the correlation coefficient of those data pairs separated by a distance in time of 3 hours. 
Bin size: 2*0.0625 days = 3 hours; bin array from 0.0625 days = 1.5h (time between CTD stations) to 
4.3125 days (sampling duration). We fitted a Gaussian function to the full correlation function (without 
removing the values < 0). With this we obtained the Lt value at each grid point (the std of the Gaussian 
function that fits best the correlation function). We also calculated the RMSE of the fit (correlation 
function vs. Gaussian function) considering the data where the Gaussian function > 0.01. We called this 
metric: RMSEv. 

Lt has low values (< 1 day) in almost the whole domain (Figure 40), including the Alboran Sea, in which 
the Alboran gyre is present during long periods of time and, hence, we expect high temporal correlation 
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scales.  The question that came from this analysis is why we obtain small values of Lt. The fit of the 
correlation functions was correct and we tried to improve the methodology. 

 

 
Figure 40: (left) Map of Lt computed from eNATL60 SSH outputs (subsampled: 1 out of 10 data points) for the reference 

configuration time period. (right) RMSE of the Gaussian fit considering the data where the Gaussian function > 0.01. 
 

• 2D Gaussian filter to SSH fields to keep spatial scales > 20 km 

We applied a 2D Gaussian filter to SSH fields in order to keep spatial scales larger than 20 km, and then 
we repeated the analysis. For the reference configuration period (summer) we obtained the same Lt 
values as with no filtering, but without the small-scale patterns with higher Lt observed in Figure 40. We 
did the same analysis for the configuration #4 (winter) without finding differences with respect to the 
original fields (no filtering). The obtained Lt values were too small in summer and also in winter. One 
reason may be the contamination of model outputs by high-frequency variability (Ciani et al., 2021; see 
Section 6.5). To explore this issue, we filtered the large spatial scales (scales responsible for the high-
frequency variability) and we repeated the analysis. 

• Remove spatial mean of SSH and apply 2D Gaussian filter to keep spatial scales > 20 km 

Instead of filtering the large spatial scales (computationally expensive) we removed the spatial mean of 
SSH at each time step. The spatial scales responsible of introducing high temporal variability in eNATL60 
outputs are of the order of 600 km (Ciani et al., 2021; see Section 6.5), and in the Mediterranean a 
Gaussian filter with this scale is similar to remove the spatial mean. We repeated the analysis of Lt 
removing first the spatial mean of SSH at each time step and then applying the Gaussian filter with L=30 
km (20 km wavelength). We still obtained too low values of Lt (Figure 41). 
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Figure 41: Maps of Lt computed from eNATL60 SSH outputs (subsampled: 1 out of 10 data points) for the (left) reference 

configuration and (right) configuration #4 time periods. The spatial mean of SSH was removed at each time step and a Gaussian 
filter was applied to the residuals to keep spatial scales > 20 km. 

 
• Conclusion 

The correlation function depends on the coherence of the signal. If the signal has coherence during the 
time window, the Lt will be high. If the signal has high variability during the time window, and low 
coherence, then Lt is small. From the example in Figure 42 and the evolution of SSH maps (not shown), 
we observed that even if the correlation is calculated inside a gyre, where we expect high Lt values, the 
calculated Lt is small. We repeated the analysis using a longer time window of 20 days without improving 
the results. We concluded that this analysis could not provide the results we expected and that a cross-
validation was needed.  

 
Figure 42: (left) Correlation function calculated from SSH (blue squares) at (lon, lat) = (1.17ºW, 36.31ºN) (western white circle in 
Figure 41) and Gaussian fit with Lt=0.35 days (magenta dots). (top right) Temporal series of SSH during the time window used to 

compute Lt. (bottom right) Same as previous figure with different limits. 
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(iv) Calculate the 2D correlation from pseudo-observations (Figure 3.2 in Rudnick et al., 2017). The 
methodology consists of computing the correlation coefficient of those pseudo-observations 
separated by a distance di (di=10, 20, 30, … km) and time ti (bins start with t0 = 0.0625 days = 1.5h 
(time between CTD stations) and we use a bin size of 3*0.0625 days = 4.5 hours), and map the 
resulting 2D correlations. We used the original T and S pseudo-observations at 100 m depth for the 
reference configuration in the Mediterranean simulated from eNATL60. The resulting 2D correlations 
maps are shown in Figure 43. To have complete maps without gaps, we applied the same analysis to 
model data (next section).  

  
Figure 43: 2D correlation maps from T and S pseudo-observations at 100 m depth for the reference configuration in the 

Mediterranean simulated from eNATL60. 
 
(v) Calculate the 2D correlation from model data (Figure 3.2 in Rudnick et al., 2017). The methodology 

consists of computing the correlation coefficient between data pairs separated by a distance di 
(di=10, 20, 30, … km) and time ti (bins start with t0 = 0.0625 days = 1.5h (time between CTD stations) 
and we use a bin size of 3*0.0625 days = 4.5 hours), and map the resulting 2D correlations. We used 
hourly eNATL60 model outputs within the reference configuration domain and sampling period (in 
the Mediterranean and at 100 m depth), but only considering 1 data point out of 3 in time, latitude 
and longitude (to save computing time). With model data, the 2D correlation maps (Figure 44) reveal 
a dominance of the spatial scales over the temporal scales. Within the same distance bin, the 
correlation slightly decreases when increasing time, but the biggest difference is between distance 
bins. However, the methodology to fit a 2D Gaussian to these maps is not clear and we decided to 
do the cross-validation analysis. 
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Figure 44: 2D correlation maps from T and S eNATL60 model data within the domain and sampling period of the reference 

configuration in the Mediterranean at 100 m depth. 
 

Cross-validation in the Mediterranean  
After ending the analysis of Lt without obtaining the expected result, we concluded that the analysis that 
could evaluate the best combination of parameters (Ls, Lt) for the spatio-temporal optimal interpolation (OI) 
was a cross-validation. The goal was to find the combination that provides the reconstruction more similar 
to the ocean truth. This analysis was done in the Mediterranean and for the reference configuration, and 
then extended to every week during 1 year. We generated pseudo-observations of SSH (instead of T and S) 
to apply the optimal interpolation only to one depth layer and save computational time. To simulate the 
observations, eNATL60 SSH data were linearly interpolated to the coordinates and time of each CTD profile 
of the reference configuration. Before, (i) we interpolated the original SSH field from eNATL60 outputs to a 
regular grid with a horizontal spacing of 1/60º and, (ii) the spatial mean of SSH computed over the western 
Mediterranean domain was subtracted to the SSH field in each time step to remove the high-frequency 
variability (Ciani et al., 2021; see Section 6.5) (Figures 45 and 46). SSH pseudo-observations were considered 
perfect, i.e., we did not simulate measurement error (Le Guillou et al., 2021 and ocean data challenge9). 

                                                 
9 https://github.com/ocean-data-challenges/2020a_SSH_mapping_NATL60 

https://github.com/ocean-data-challenges/2020a_SSH_mapping_NATL60
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Figure 45: (dots) Pseudo-observations of SSH simulated from the eNATL60 model data including the high-frequency variability (see 
Section 6.5). The background is the eNATL60 SSH data in different dates during the sampling period. During 6 days we can observe 

the evolution of the high-frequency variability in the reference configuration domain. 
 

 
Figure 46: (dots) Pseudo-observations of SSH simulated from the eNATL60 SSH field after removing the spatial mean in each time 

step. The background is the eNATL60 SSH field without the spatial mean in different dates during the sampling period.  
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As a first cross-validation test, the pseudo-observations of SSH were reconstructed with the spatio-temporal 
OI applying different values of noise-to-signal error, Ls and Lt. The reconstructed fields were then linearly 
interpolated to the ocean truth grid. For the comparison between reconstructed and ocean truth SSH we 
calculated the RMSE-based score (RMSEs) over the domain, a metric used in the ocean data challenge10. A 
RMSEs of 1 means perfect reconstruction, while a RMSEs of 0 means bad reconstruction. 

RMSE-based score = 1 – [RMS(SSHrec – SSHtruth)/RMS(SSHtruth)] 

Values tested:  

• Ls = [10, 12, 14, 16, 18, 20, 22, 24, 26, 28] km 
• Lt = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] days 
• errors = [0.05%, 0.3%, 1%, 3%] 

The cross-validation was first done for the reference configuration period (reconstruction date: 2009-09-03 
03:30). We found small differences in the RMSEs between the best and worst reconstructions [~0.9 vs. ~0.7]. 
This suggests that the spatio-temporal OI works well with different combinations of parameters, and that we 
need to do the analysis for 1 year as different structures may lead to different statistics. 

The cross-validation was then done every 7 days for 1 year. The configuration of the simulated observations 
(longitude and latitude of each observation) was the same as the reference configuration, but the date of 
each observation was changed to start a new sampling every 7 days during 1 year. The first configuration 
started on 02-07-2009 and a new configuration started every 7 days afterwards. We simulated a total of 52 
configurations during the 1-year period. The configuration (or sampling) duration is 4.33 days (4 days, 7 h 
and 50 min). The first configuration goes from 2009-07-02 00:00 to 2009-07-06 07:50, and the last 
configuration from 2010-06-24 00:00 to 2010-06-28 07:50. Note that the model data is available from 2009-
07-01 00:30 to 2010-06-30 23:30. The reconstruction date was defined as the central date of each 
configuration minus 15 minutes to have the same time as the model outputs (hh:30) and avoid temporal 
interpolation. For instance, for the first configuration the reconstruction time is 2009-07-04 03:30. 

Table 5.  Combination of spatial (Lx in the table) and temporal (Lt) correlation scales that provides the reconstruction of SSH with the 
highest RMSE-based score for each noise-to-signal error variance and configuration (identified by the reconstruction date).  
 

Date error = 0.05% error = 0.3% error = 1% error = 3% 
2009-07-04 03:30 
2009-07-11 03:30 
2009-07-18 03:30 
2009-07-25 03:30 
2009-08-01 03:30 
2009-08-08 03:30 
2009-08-15 03:30 
2009-08-22 03:30 
2009-08-29 03:30 
2009-09-05 03:30 
2009-09-12 03:30 
2009-09-19 03:30 
2009-09-26 03:30 

Lx=10km Lt=07days 
Lx=28km Lt=10days 
Lx=14km Lt=01days 
Lx=28km Lt=01days 
Lx=28km Lt=10days 
Lx=28km Lt=10days 
Lx=18km Lt=04days 
Lx=26km Lt=02days 
Lx=28km Lt=02days 
Lx=28km Lt=01days 
Lx=20km Lt=10days 
Lx=28km Lt=02days 
Lx=28km Lt=02days 

Lx=10km Lt=07days 
Lx=28km Lt=09days 
Lx=28km Lt=01days 
Lx=28km Lt=01days 
Lx=26km Lt=09days 
Lx=28km Lt=02days 
Lx=28km Lt=09days 
Lx=24km Lt=10days 
Lx=28km Lt=01days 
Lx=28km Lt=01days 
Lx=28km Lt=10days 
Lx=28km Lt=02days 
Lx=24km Lt=10days 

Lx=12km Lt=10days 
Lx=28km Lt=04days 
Lx=26km Lt=01days 
Lx=28km Lt=01days 
Lx=24km Lt=01days 
Lx=28km Lt=02days 
Lx=26km Lt=06days 
Lx=26km Lt=08days 
Lx=28km Lt=02days 
Lx=28km Lt=02days 
Lx=24km Lt=05days 
Lx=28km Lt=02days 
Lx=24km Lt=08days 

Lx=12km Lt=10days 
Lx=28km Lt=03days 
Lx=26km Lt=01days 
Lx=28km Lt=01days 
Lx=22km Lt=01days 
Lx=28km Lt=02days 
Lx=22km Lt=05days 
Lx=22km Lt=05days 
Lx=26km Lt=03days 
Lx=28km Lt=02days 
Lx=22km Lt=03days 
Lx=28km Lt=02days 
Lx=22km Lt=06days 

                                                 
10 https://github.com/ocean-data-
challenges/2020a_SSH_mapping_NATL60/blob/master/notebooks/example_data_eval.ipynb 

https://github.com/ocean-data-challenges/2020a_SSH_mapping_NATL60/blob/master/notebooks/example_data_eval.ipynb
https://github.com/ocean-data-challenges/2020a_SSH_mapping_NATL60/blob/master/notebooks/example_data_eval.ipynb
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Date error = 0.05% error = 0.3% error = 1% error = 3% 
2009-10-03 03:30 
2009-10-10 03:30 
2009-10-17 03:30 
2009-10-24 03:30 
2009-10-31 03:30 
2009-11-07 03:30 
2009-11-14 03:30 
2009-11-21 03:30 
2009-11-28 03:30 
2009-12-05 03:30 
2009-12-12 03:30 
2009-12-19 03:30 
2009-12-26 03:30 
2010-01-02 03:30 
2010-01-09 03:30 
2010-01-16 03:30 
2010-01-23 03:30 
2010-01-30 03:30 
2010-02-06 03:30 
2010-02-13 03:30 
2010-02-20 03:30 
2010-02-27 03:30 
2010-03-06 03:30 
2010-03-13 03:30 
2010-03-20 03:30 
2010-03-27 03:30 
2010-04-03 03:30 
2010-04-10 03:30 
2010-04-17 03:30 
2010-04-24 03:30 
2010-05-01 03:30 
2010-05-08 03:30 
2010-05-15 03:30 
2010-05-22 03:30 
2010-05-29 03:30 
2010-06-05 03:30 
2010-06-12 03:30 
2010-06-19 03:30 
2010-06-26 03:30 

Lx=14km Lt=01days 
Lx=28km Lt=02days 
Lx=14km Lt=01days 
Lx=10km Lt=02days 
Lx=28km Lt=01days 
Lx=26km Lt=02days 
Lx=18km Lt=01days 
Lx=10km Lt=02days 
Lx=22km Lt=01days 
Lx=28km Lt=02days 
Lx=14km Lt=08days 
Lx=28km Lt=10days 
Lx=20km Lt=02days 
Lx=24km Lt=02days 
Lx=24km Lt=02days 
Lx=12km Lt=01days 
Lx=26km Lt=10days 
Lx=12km Lt=02days 
Lx=10km Lt=01days 
Lx=10km Lt=02days 
Lx=12km Lt=01days 
Lx=10km Lt=01days 
Lx=20km Lt=01days 
Lx=14km Lt=06days 
Lx=28km Lt=07days 
Lx=20km Lt=04days 
Lx=28km Lt=10days 
Lx=16km Lt=01days 
Lx=14km Lt=10days 
Lx=20km Lt=10days 
Lx=28km Lt=01days 
Lx=28km Lt=04days 
Lx=28km Lt=05days 
Lx=22km Lt=10days 
Lx=16km Lt=10days 
Lx=18km Lt=10days 
Lx=20km Lt=10days 
Lx=28km Lt=10days 
Lx=16km Lt=09days 

Lx=14km Lt=01days 
Lx=28km Lt=02days 
Lx=18km Lt=01days 
Lx=10km Lt=02days 
Lx=28km Lt=10days 
Lx=28km Lt=01days 
Lx=28km Lt=01days 
Lx=10km Lt=02days 
Lx=28km Lt=01days 
Lx=28km Lt=02days 
Lx=18km Lt=10days 
Lx=28km Lt=08days 
Lx=28km Lt=02days 
Lx=28km Lt=07days 
Lx=28km Lt=01days 
Lx=12km Lt=01days 
Lx=26km Lt=04days 
Lx=12km Lt=02days 
Lx=28km Lt=01days 
Lx=28km Lt=10days 
Lx=28km Lt=01days 
Lx=28km Lt=01days 
Lx=14km Lt=02days 
Lx=16km Lt=10days 
Lx=28km Lt=05days 
Lx=20km Lt=03days 
Lx=28km Lt=08days 
Lx=18km Lt=01days 
Lx=10km Lt=10days 
Lx=20km Lt=10days 
Lx=28km Lt=01days 
Lx=28km Lt=03days 
Lx=26km Lt=04days 
Lx=26km Lt=02days 
Lx=18km Lt=10days 
Lx=26km Lt=01days 
Lx=22km Lt=06days 
Lx=28km Lt=06days 
Lx=14km Lt=04days 

Lx=14km Lt=01days 
Lx=28km Lt=02days 
Lx=20km Lt=01days 
Lx=10km Lt=02days 
Lx=28km Lt=05days 
Lx=28km Lt=01days 
Lx=28km Lt=01days 
Lx=10km Lt=02days 
Lx=28km Lt=01days 
Lx=28km Lt=02days 
Lx=24km Lt=10days 
Lx=28km Lt=01days 
Lx=28km Lt=02days 
Lx=28km Lt=04days 
Lx=28km Lt=01days 
Lx=14km Lt=01days 
Lx=24km Lt=04days 
Lx=28km Lt=10days 
Lx=28km Lt=01days 
Lx=28km Lt=05days 
Lx=28km Lt=01days 
Lx=28km Lt=10days 
Lx=28km Lt=02days 
Lx=16km Lt=10days 
Lx=26km Lt=04days 
Lx=20km Lt=03days 
Lx=28km Lt=04days 
Lx=20km Lt=01days 
Lx=10km Lt=10days 
Lx=24km Lt=10days 
Lx=10km Lt=10days 
Lx=26km Lt=03days 
Lx=26km Lt=03days 
Lx=22km Lt=02days 
Lx=16km Lt=06days 
Lx=22km Lt=01days 
Lx=22km Lt=03days 
Lx=28km Lt=04days 
Lx=16km Lt=03days 

Lx=14km Lt=01days 
Lx=28km Lt=02days 
Lx=20km Lt=01days 
Lx=10km Lt=02days 
Lx=28km Lt=03days 
Lx=28km Lt=01days 
Lx=28km Lt=01days 
Lx=10km Lt=02days 
Lx=28km Lt=01days 
Lx=28km Lt=02days 
Lx=20km Lt=07days 
Lx=28km Lt=03days 
Lx=26km Lt=02days 
Lx=28km Lt=02days 
Lx=28km Lt=01days 
Lx=16km Lt=01days 
Lx=22km Lt=05days 
Lx=28km Lt=07days 
Lx=28km Lt=01days 
Lx=28km Lt=03days 
Lx=28km Lt=01days 
Lx=28km Lt=10days 
Lx=28km Lt=02days 
Lx=16km Lt=10days 
Lx=24km Lt=03days 
Lx=18km Lt=03days 
Lx=28km Lt=02days 
Lx=18km Lt=05days 
Lx=10km Lt=10days 
Lx=20km Lt=06days 
Lx=28km Lt=10days 
Lx=22km Lt=03days 
Lx=26km Lt=03days 
Lx=24km Lt=03days 
Lx=28km Lt=09days 
Lx=20km Lt=01days 
Lx=24km Lt=02days 
Lx=28km Lt=03days 
Lx=16km Lt=03days 

 
The combination of parameters (Ls, Lt) that provides the reconstruction of SSH with the highest RMSEs 
(named "winner combination") is listed in Table 5 for each noise-to-signal error and configuration. The winner 
combination is different for each error and configuration because it depends on the features we aim to 
reconstruct, which are different for each configuration, and because the error we assume also impacts the 
interpolation. Note that between the winner combination and the other combinations the differences in 
RMSEs may be small and, hence, the winner combination is not the only good option.  

This analysis highlighted the need to fix the noise-to-signal error variance assumed by the interpolation. After 
reviewing other studies, we fixed a noise-to-signal error variance of 0.3%, the value used in the ocean data 
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challenge11, in which they also reconstruct simulated observations of SSH without including measurement 
errors. We also fixed the spatial correlation scale to focus on SWOT scales of ~20 km (note that in altimetry 
the spatial and temporal correlation scales applied to map the SSH observations are always the same). A 
spatial correlation scale of 20 km is a good option considering the sampling resolution of 10 km and the size 
of the sampling domain (Barceló-Llull et al., 2021), and a good compromise between the different values 
found in the spatial correlation scale analysis. With these parameters fixed, different values of Lt were tested:  
2, 3, 4, 5, 6, 7, 8, 9 and 10 days. 

 
Figure 47: (Top) Temporal correlation scale (Lt) of the best SSH reconstructions made with the spatio-temporal optimal interpolation 

(noise-to-signal error variance of 0.3% and spatial correlation scale of 20 km). (Bottom) RMSE-based score of the corresponding 
reconstructions.  

 
Analysing the Lt values of the reconstructions with the highest RMSEs for each date (Figure 47), we observe 
that in 20 dates Lt = 2 days provides the best reconstructions, while Lt = 10 days gives the best reconstruction 
on 17 dates. This means that the more extreme values of Lt provide the best reconstructions in different 
configurations. However, we know from previous analysis that other values of Lt may provide also good 
results (high RMSEs). For example, for the reference configuration period (applying an error of 0.3% and Ls = 
20 km) the reconstruction with the highest RMSEs (0.86) is the one with Lt = 2 days, while Lt = 4 days provides 
the reconstruction with the lowest RMSEs (0.83). However, in both cases the RMSEs is high (0.86 vs. 0.83) 
and close to 1 (RMSEs of 1 means perfect reconstruction). 

                                                 
11 https://github.com/ocean-data-
challenges/2020a_SSH_mapping_NATL60/blob/master/notebooks/baseline_oi.ipynb Noise level assumed: 5% in 
standard deviation (0.05**2 = 0.0025 = 0.25% ~ 0.3% in variance). 

https://github.com/ocean-data-challenges/2020a_SSH_mapping_NATL60/blob/master/notebooks/baseline_oi.ipynb
https://github.com/ocean-data-challenges/2020a_SSH_mapping_NATL60/blob/master/notebooks/baseline_oi.ipynb
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Figure 48: (Top) Temporal correlation scale (Lt) of the best (blue) and worst (yellow) SSH reconstructions made with the spatio-

temporal optimal interpolation (noise-to-signal error variance of 0.3% and spatial correlation scale of 20 km). (Bottom) RMSE-based 
score of the corresponding reconstructions. 

 
Extending this comparison to all configurations (Figure 48), the Lt values which provide the lowest RMSEs are 
Lt = 2 days in 11 dates, Lt = 10 days in 17 dates and Lt = [3,4] days in 22 dates. Hence, the Lt values of the 
best and worst reconstructions are highly dependent on the structures/dates. However, the differences in 
RMSEs between the best and worst reconstructions are small. In most dates (~40) the RMSEs is higher than 
0.75 for both reconstructions, which means that all Lt values tested provide good reconstructions, even if 
they are different between them (Figure 49).  
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Figure 49: SSH model field (ocean truth) and reconstructed fields for different values of Lt for the reference configuration on 2009-

09-03 03:30 (noise-to-signal error variance of 0.3% and spatial correlation scale of 20 km). The reconstruction with the highest RMEs 
is the one with Lt = 2 days (RMSEs = 0.860), and the second-best reconstruction is the one with Lt = 9 days (0.842).  Both 

reconstructed fields are similar to the model SSH, even if they are different between them.  

 
Fixing the two extreme values of Lt:  

• Lt = 10 days: quasi-synoptic observations during the sampling period 
• Lt = 2 days: non-synoptic observations during the sampling period, 

we evaluate the temporal evolution of the RMSEs of both reconstructions (Figure 50). High values of RMSEs 
for both reconstructions are observed in most dates: one reconstruction has higher values than the other 
and vice versa without following a defined pattern. The differences between both reconstructions are overall 
small, except in some cases in January where the Lt = 2 days reconstruction is better than the one with Lt = 
10 days, however the RMSEs values are below 0.75 in both cases (see maps below). The worst reconstruction 
date is 2010-01-16 03:30; Lt = 2 days provides a RMSEs of 0.49 and Lt = 10 days a RMSEs 0.45. We checked 
maps of SSH in January and found that they still have high-frequency variability. This is the reason of the low 
values of RMSEs for the reconstructions performed in January.  
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Figure 50: RMSE-based score of the SSH reconstructions made with the spatio-temporal optimal interpolation assuming Lt = 2 days 

(blue) and Lt = 10 days (magenta) (noise-to-signal error variance of 0.3% and spatial correlation scale of 20 km). Pseudo-
observations of SSH generated in the Mediterranean from eNATL60. 

 
The same analysis has been done from SSH pseudo-observations generated from WMOP (Figure 51). High 
values of RMSEs for both reconstructions are observed in all dates while the differences between both 
reconstructions are small. The results are consistent with the outcome from the analysis of eNATL60 SSH 
pseudo-observations. 

 

Figure 51: RMSE-based score of the SSH reconstructions made with the spatio-temporal optimal interpolation assuming Lt = 2 days 
(blue) and Lt = 10 days (magenta) (noise-to-signal error variance of 0.3% and spatial correlation scale of 20 km). Pseudo-

observations of SSH generated in the Mediterranean from WMOP.  
 

In the Atlantic, following the same steps, the sensitivity test of SSH pseudo-observations generated from 
eNATL60 drives to comparable results as the analysis in the Mediterranean (Figure 52). Similar values of 
RMSEs are obtained for both reconstructions in all the dates analysed; these values are high except in one 
specific date in March. 
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Figure 52: RMSE-based score of the SSH reconstructions made with the spatio-temporal optimal interpolation assuming Lt = 2 days 

(blue) and Lt = 10 days (magenta) (noise-to-signal error variance of 0.3% and spatial correlation scale of 20 km). Pseudo-
observations of SSH generated in the Atlantic from eNATL60.  

 
We conclude that reconstructions done through the spatio-temporal optimal interpolation assuming a 
temporal correlation scale of 2 days, which means non-synoptic observations during the sampling period, 
leads to similar RMSE-based scores than assuming Lt = 10 days. Hence, using a temporal correlation scale of 
10 days and assuming quasi-synoptic observations is a good option for the interpolation of observations in a 
sampling strategy similar to the reference configuration. The improvement introduced by assuming a 
temporal correlation scale of 2 days (non-synoptic observations) is not always translated in better 
reconstructions. 

8.2. Machine-learning 
The objective of applying a reconstruction method based on machine learning is to evaluate if it can make 
accurate predictions from sea surface fields such as salinity and temperature. Deep Learning techniques, with 
their many connected layers, are useful for the extraction of non-linear chaotic underlying dynamics in 
nature, specifically at the ocean surface (Sinha et al., 2021; Manucharyan et al. 2021).  

In order to overcome the issue of sparse and noisy observations, a variational assimilation framework is used, 
as it is known for leading to significant improvements in terms of the spatial scales resolved by the 
interpolation compared to the optimal interpolation and other data-driven schemes (e.g. dinEOF) (Lopez-
Radcenco et al., 2018).  The variational data assimilation approach along with Deep Learning techniques are 
merged in the 4D-VarNet model (Fablet et al., 2019; Beauchamp et al., 2020).  

4D-VarNet finds the best compromise between a Neural Network-based model propagator and observations 
to have a reconstructed field of the variables of interest. This is done within a deep learning differentiation 
scheme, and therefore the amount of data available for the training step is crucial for the performance of 
this method. 

The main challenge here, given the small amount of data obtained from an oceanographic campaign, is to 
find the optimal neural network architecture to retrieve the dynamics and correlations in the region used for 
the spatial interpolation. 

4D-VarNet model 
The model applied to reconstruct the simulated observations is the 4DVarNet model. It is based on the 4D-
Var model of data assimilation and a prior state given by Convolutional Neural Networks. 4D-Var is a four-
dimensional variational model which generalizes from the 3D-Var model (Carrassi et al., 2018) to take into 
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account the temporal dimension over an assimilation window (Figure 53). The objective is to find the initial 
condition such that the difference between observation and reconstruction is minimized within the 
assimilation window. For each new assimilation window, the observations are assimilated using a segment 
of the previous prediction. For this analysis we aim to reconstruct surface fields and, hence, the depth 
component is not taken into account in the model. 

 

 
Figure 53: 4D-Var model assimilation scheme. 
 
The objective is to minimize the error between the time-dependent state 𝑥𝑥, and a dynamical prior 𝛷𝛷(𝑥𝑥), 

𝑥𝑥� =  𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥||𝑥𝑥 −  𝛷𝛷(𝑥𝑥)|| 

𝛷𝛷(𝑥𝑥) is a trainable plug-and-play prior (Fablet et al, 2021). In this case, due to the small amount of data an 
auto-encoder architecture is used as prior (Figure 54). A simple Principal Component Analysis (PCA) could 
also be used, but as the problem comes from geophysical fluid dynamics non-linearities appear and they 
should be captured. 

With the auto-encoder Neural Network architecture the goal is to look for a coordinate transformation of 
the state 𝑢𝑢 which enables to explain better the underlying dynamics. Then, the objective is to predict 
accurately how the latent space 𝑧𝑧 evolves. This is done by means of an encoder 𝑓𝑓, a decoder 𝑎𝑎, and 𝑢𝑢 which 
is given by the observations and the lower resolution field (Lusch et al., 2018).  
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Figure 54: Auto-encoder architecture for the dynamical prior. 
 
The state 𝑢𝑢 is introduced, then the variables of the latent space 𝑧𝑧 are inferred and the decoder will create a 
prediction field 𝑢𝑢′. This prediction is then compared with the Ground Truth, and by minimizing the loss 
function with an iterative process, the variables from the latent space are adjusted. 

Note that the dimension of the latent space, as well as the encoder 𝑓𝑓 and decoder 𝑎𝑎, are to be set up by 
hand. Here, most of the parameters of the model appear, therefore due to the small amount of data this 
structure must be kept as simple as possible. 

8.3. Model data assimilation 
The WMOP Data Assimilation system employs a Multimodel Local Ensemble Optimal Interpolation (EnOI) 
scheme. It is a widely used method, which represents a good alternative to more complex and 
computationally expensive methods as EnKF or 4Dvar. It consists in a sequence of analyses (model updates 
given a set of observations) and model forward simulations. 

The Background error covariances are computed from an ensemble of realizations, which are generated from 
randomly sampling inter-annually a set of different hindcast simulations. Each member could be extracted 
from any year of the hindcast period within a 90-day time-window centred on the analysis date after 
removing the seasonal cycle. They reflect the mesoscale variability, representing dynamically consistent 
covariances between different model variables and depths. The configuration used in this work has been 
previously employed in several studies in the western Mediterranean Sea (e.g. Pascual et al., 2017; Barceló-
Llull et al., 2018; Hernández-Lasheras and Mourre, 2018, Hernández-Lasheras et al., 2021) and in the 
operational system. More details of the data assimilation procedure can be found in Hernández-Lasheras and 
Mourre (2018). 

8.4. MIOST tool 
To map multivariate and multiscale sea level and surface current, we use the Multiscale Inversion for Ocean 
Surface Topography (MIOST) variational tool to retrieve both geostrophic and ageostrophic currents. This 
tool has been developed first by Ubelmann et al. (2021) to reconstruct ocean currents combining altimetry 
and spaceborne doppler data in an observing system simulation experiment as a preparatory work of the ESA 
SKIM mission (Ardhuin et al. 2019). 
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The MIOST method is fully described in Ubelmann et al. (2021). MIOST is based on the Optimal Interpolation 
and in particular the Sherman-Morrison-Woodbury transformation, allowing the inversion in state space and 
not in the observation space. Working in state space allows the use of a large number of observations (larger 
than the state grid size). This decomposition is useful to manage multiple signals of various scales in time 
and/or space (Ubelmann et al. 2021)  and allows the decomposition of the signal into representors 
representing different time and space scales (mesoscale to large-scale) and different physical signals 
(geostrophy, internal waves, near-inertial oscillations, tropical waves, Ekman component…). It allows thus to 
go beyond the geostrophic approximation and thus the reconstruction of ageostrophic components of the 
circulation. 

Each sub-component of the system is decomposed on a wavelet basis. The first component is the geostrophic 
component. This component has a signature on both topography and currents. The time-space wavelet basis 
is defined along coordinates (longitude, latitude, time) for wavelengths between 80 km and 900 km spanning 
in all directions of the plane, the time decorrelation scale associated is about 10 days. The second component 
is the ageostrophic component (decomposed in rotational and divergence parts). This component has a 
signature only on currents by construction. We choose a decorrelation time scale equal to 2 days and a 
decorrelation length scale equal to 500 km to mainly reconstruct Ekman currents. 
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9. Design of in situ sampling strategies to reconstruct fine-scale ocean currents in the context of SWOT 
satellite validation 

9.1. Maps of reconstructed fields in the Mediterranean 

Configurations simulated from the CMEMS Mediterranean reanalysis 

Reconstructed dynamic height 
 

 
Figure 55: (Left) Dynamic height (DH) anomaly at the upper layer (5 m for all configurations except for configuration 5 (gliders), in which the upper layer is at 30 m) reconstructed from each 

configuration simulated from the CMEMS Mediterranean reanalysis model. (right) Sea surface height (SSH) anomaly from the CMEMS Mediterranean reanalysis model on the same date as each 
reconstruction (model fields were linearly interpolated to the date of the corresponding reconstruction (see Table 4)) and within the configuration domain. (all) To compute anomalies, the spatial 
average over each configuration domain is subtracted to the corresponding field. Note that to calculate statistics model fields are interpolated onto the reconstruction grid and the anomalies are 

computed within configuration 2a domain for all configurations.  
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Reconstructed geostrophic velocity magnitude 
 

 
Figure 56: (Left) Geostrophic velocity magnitude at the upper layer (5 m for all configurations except for configuration 5 (gliders), in which the upper layer is at 30 m) reconstructed from each 
configuration simulated from the CMEMS Mediterranean reanalysis model. (right) Horizontal velocity magnitude from the CMEMS Mediterranean reanalysis model on the same date as each 

reconstruction (model fields were linearly interpolated to the date of the corresponding reconstruction (see table 4)) and within the configuration domain. Note that to calculate statistics model 
fields are interpolated onto the reconstruction grid and the statistics are computed within configuration 2a (5 km) domain for all configurations.  
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Configurations simulated from eNATL60 

Reconstructed dynamic height 
 

 
Figure 57: (Left) Dynamic height (DH) anomaly at the upper layer (5 m for all configurations except for configuration 5 (gliders), in which the upper layer is at 30 m) reconstructed from each 

configuration simulated from eNATL60 in the Mediterranean. (right) Sea surface height (SSH) anomaly from eNATL60 on the same date as each reconstruction (model fields were linearly 
interpolated to the date of the corresponding reconstruction (see Table 4)) and within the configuration domain. (all) To compute anomalies, the spatial average over each configuration domain is 

subtracted to the corresponding field. Note that to calculate statistics model fields are interpolated onto the reconstruction grid and the anomalies are computed within configuration 2a (5 km) 
domain for all configurations.  
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Reconstructed geostrophic velocity magnitude 
 

 
 

Figure 58: (Left) Geostrophic velocity magnitude at the upper layer (5 m for all configurations except for configuration 5 (gliders), in which the upper layer is at 30 m) reconstructed from each 
configuration simulated from eNATL60 in the Mediterranean. (right) Horizontal velocity magnitude from eNATL60 on the same date as each reconstruction (model fields were linearly interpolated 
to the date of the corresponding reconstruction (see table 4)) and within the configuration domain. Note that to calculate statistics model fields are interpolated onto the reconstruction grid and 

the statistics are computed within configuration 2a (5 km) domain for all configurations.  
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Configurations simulated from WMOP 

Reconstructed dynamic height 
 

 
Figure 59: (Left) Dynamic height (DH) anomaly at the upper layer (5 m for all configurations except for configuration 5 (gliders), in which the upper layer is at 30 m) reconstructed from each 

configuration simulated from WMOP. (right) Sea surface height (SSH) anomaly from WMOP on the same date as each reconstruction (model fields were linearly interpolated to the date of the 
corresponding reconstruction (see Table 4)) and within the configuration domain. (all) To compute anomalies, the spatial average over each configuration domain is subtracted to the 

corresponding field. Note that to calculate statistics model fields are interpolated onto the reconstruction grid and the anomalies are computed within configuration 2a (5 km) domain for all 
configurations.  
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Reconstructed geostrophic velocity magnitude 
 

 
 

Figure 60: (Left) Geostrophic velocity magnitude at the upper layer (5 m for all configurations except for configuration 5 (gliders), in which the upper layer is at 30 m) reconstructed from each 
configuration simulated from WMOP. (right) Horizontal velocity magnitude from WMOP on the same date as each reconstruction (model fields were linearly interpolated to the date of the 

corresponding reconstruction (see table 4)) and within the configuration domain. Note that to calculate statistics model fields are interpolated onto the reconstruction grid and the statistics are 
computed within configuration 2a (5 km) domain for all configurations.  
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9.2. Maps of reconstructed fields in the Atlantic 

Configurations simulated from the CMEMS global reanalysis 

Reconstructed dynamic height 
 

 
Figure 61: (Left) Dynamic height (DH) anomaly at the upper layer (5 m for all configurations except for configuration 5 (gliders), in which the upper layer is at 30 m) reconstructed from each 

configuration simulated from the CMEMS global reanalysis model in the Atlantic. (right) Sea surface height (SSH) anomaly from the CMEMS global reanalysis model on the same date as each 
reconstruction (model fields were linearly interpolated to the date of the corresponding reconstruction (see Table 4)) and within the configuration domain. (all) To compute anomalies, the spatial 
average over each configuration domain is subtracted to the corresponding field. Note that to calculate statistics model fields are interpolated onto the reconstruction grid and the anomalies are 

computed within configuration 2a (5 km) domain for all configurations.  
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Reconstructed geostrophic velocity magnitude 
 

 
 

Figure 62: (Left) Geostrophic velocity magnitude at the upper layer (5 m for all configurations except for configuration 5 (gliders), in which the upper layer is at 30 m) reconstructed from each 
configuration simulated from the CMEMS global reanalysis model in the Atlantic. (right) Horizontal velocity magnitude from the CMEMS global reanalysis model on the same date as each 

reconstruction (model fields were linearly interpolated to the date of the corresponding reconstruction (see table 4)) and within the configuration domain. Note that to calculate statistics model 
fields are interpolated onto the reconstruction grid and the statistics are computed within configuration 2a (5 km) domain for all configurations.  
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Configurations simulated from eNATL60 

Reconstructed dynamic height 
 

 
 

Figure 63: (Left) Dynamic height (DH) anomaly at the upper layer (5 m for all configurations except for configuration 5 (gliders), in which the upper layer is at 30 m) reconstructed from each 
configuration simulated from eNATL60 in the Atlantic. (right) Sea surface height (SSH) anomaly from eNATL60 on the same date as each reconstruction (model fields were linearly interpolated to 
the date of the corresponding reconstruction (see Table 4)) and within the configuration domain. (all) To compute anomalies, the spatial average over each configuration domain is subtracted to 
the corresponding field. Note that to calculate statistics model fields are interpolated onto the reconstruction grid and the anomalies are computed within configuration 2a (5 km) domain for all 

configurations.  
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Reconstructed geostrophic velocity magnitude 
 

 
 

Figure 64: (Left) Geostrophic velocity magnitude at the upper layer (5 m for all configurations except for configuration 5 (gliders), in which the upper layer is at 30 m) reconstructed from each 
configuration simulated from eNATL60 in the Atlantic. (right) Horizontal velocity magnitude from eNATL60 on the same date as each reconstruction (model fields were linearly interpolated to the 

date of the corresponding reconstruction (see table 4)) and within the configuration domain. Note that to calculate statistics model fields are interpolated onto the reconstruction grid and the 
statistics are computed within configuration 2a (5 km) domain for all configurations.  
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9.3. Evaluation of the best sampling strategies 

Approach  
To evaluate the best configurations in each region, we compare the reconstructed fields (DH and geostrophic 
velocity magnitude) to the corresponding ocean truth fields (SSH and horizontal velocity magnitude) (Figures 
55-60 for the Mediterranean, Figures 61-64 for the Atlantic). The comparison is done through the RMSE-
based score (Figures 65-66 for the Mediterranean, Figures 67-68 for the Atlantic, Tables 6-9). The procedure 
consists of the following steps:  

• Extract model fields in a bigger domain than the corresponding configuration. Linearly interpolate 
them to the date of the reconstruction and onto the reconstruction grid. 

• Limit model and reconstructed fields within the domain of configuration 2a. 
• Compute anomalies of DH and SSH subtracting the spatial average of each field over the new domain 

(configuration 2a).  
• Calculate the RMSE-based score (RMSEs) between reconstructed and model fields, for each 

configuration, model and region.  

RMSE-based score = 1 – [RMS(reconstruction – truth)/RMS(truth)] 

Analysis in the Mediterranean 

Comparison based on the DH reconstruction 
The RMSE-based score (RMSEs) computed from the reconstructed DH and ocean truth SSH anomaly fields in 
the Mediterranean is represented in Figure 65 for each model and configuration, and in the leaderboard 
(Table 6). The configurations simulated from each model have similar scores between them, while the scores 
are different for each model. The reconstructions from eNATL60 have the highest scores, while the 
reconstructions from the CMEMS reanalysis have the lowest scores. This may be due to the root-mean-
square of the ocean truth, that is different for each model and similar between different configurations 
simulated from the same model (see RMSE-based score equation). In addition, the eNATL60 has higher 
resolution than the other models. This may also impact the reconstructions. Here we evaluate the 
configurations with better scores for each model and then assess the best sampling strategies considering 
the results from the 3 models.  
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Figure 65: RMSE-based score (RMSEs) of the reconstructed DH anomaly vs. the ocean truth SSH anomaly for each configuration (x-
axis) and model (different markers) for the Mediterranean. 

A result that is clear from this analysis is that configuration 3b, in which CTD rosette casts are replaced by an 
underway CTD sampling one profile every 2.5 km and with a vertical extension of 200 m, is the configuration 
with the lowest scores for eNATL60 and CMEMS, and the second with the lowest scores for WMOP. Maps of 
DH show that for this configuration the values of DHa are lower than for the other reconstructions and ocean 
truth (Figures 55, 57 and 59). This may indicate that deeper profiles are needed in order to reconstruct the 
DH and geostrophic velocities at the ocean upper layer, while the increase on the horizontal resolution of 
CTD profiles does not introduce improvements with respect to the other configurations. For WMOP, 
configuration 5, in which CTD rosette casts are replaced by 7 gliders sampling zonal transects simultaneously, 
has the lowest scores.  
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Table 6. Leaderboard of all configurations evaluated in the Mediterranean (simulated from 3 different models), disregarding 
configuration 4 that is used to analyse seasonality. Leaderboard based on the RMSE-based score of the reconstructed DH anomaly 
vs. the ocean truth SSH anomaly.  

Leaderboard for DH reconstruction 
Rank  RMSEs                      Configuration 
  01      0.9448      2b (CTD 8km 1000m Sep.) eNATL60 
  02      0.9448      2d (CTD 15km 1000m Sep.) eNATL60 
  03      0.9412      1 (CTD 10km 500m Sep.) eNATL60 
  04      0.9411      r (CTD 10km 1000m Sep.) eNATL60 
  05      0.9404      2c (CTD 12km 1000m Sep.) eNATL60 
  06      0.9357      2a (CTD 5km 1000m Sep.) eNATL60 
  07      0.9307      3a (uCTD 6km 500m Sep.) eNATL60 
  08      0.8823      5 (Gliders 6km 500m Sep.) eNATL60 
  09      0.8694      2d (CTD 15km 1000m Sep.) WMOP 
  10      0.8674      2b (CTD 8km 1000m Sep.) WMOP 
  11      0.8650      2a (CTD 5km 1000m Sep.) WMOP 
  12      0.8609      r (CTD 10km 1000m Sep.) WMOP 
  13      0.8572      2c (CTD 12km 1000m Sep.) WMOP 
  14      0.8019      3a (uCTD 6km 500m Sep.) WMOP 
  15      0.7864      1 (CTD 10km 500m Sep.) WMOP 
  16      0.6781      5 (Gliders 6km 500m Sep.) CMEMS 
  17      0.6223      3b (uCTD 2.5km 200m Sep.) WMOP 
  18      0.6149      2d (CTD 15km 1000m Sep.) CMEMS 
  19      0.6034      3a (uCTD 6km 500m Sep.) CMEMS 
  20      0.5634      2c (CTD 12km 1000m Sep.) CMEMS 
  21      0.5495      5 (Gliders 6km 500m Sep.) WMOP 
  22      0.5491      r (CTD 10km 1000m Sep.) CMEMS 
  23      0.5352      2b (CTD 8km 1000m Sep.) CMEMS 
  24      0.4946      1 (CTD 10km 500m Sep.) CMEMS 
  25      0.4797      2a (CTD 5km 1000m Sep.) CMEMS 
  26      0.4457      3b (uCTD 2.5km 200m Sep.) eNATL60 
  27      0.3891      3b (uCTD 2.5km 200m Sep.) CMEMS 

 
Regarding the best sampling strategies, with eNATL60 seven configurations have scores higher than 0.93 
(Table 6): reference, 1, 2a-d, 3a. This means that different strategies provide reconstructions similar to the 
ocean truth and are good options. Configuration 5 has a lower score (0.8823) than the other configurations, 
but this value is still high.  

For the sampling strategies simulated from WMOP, the configurations that consider CTD casts down to 1000 
m and separated by different horizontal resolutions (reference, 2a-d) have RMSEs between 0.8572 and 
0.8694; these scores are high and similar between them. Configurations that sample the water column down 
to 500 m depth have lower scores, however they are still high: configuration 3a has a RMSEs of 0.8019 and 
configuration 1 has a score of 0.7864. Between the reference configuration and configuration 1, which have 
the same horizontal resolution but different vertical extension, the difference in the RMSEs is 0.8609-
0.7864=0.0745~0.07. This is the improvement introduced when sampling the depth layer between 500 and 
1000 m depth, even if this sampling is slower (4.3125 days) than only sampling the upper 500 m (3.0625 days) 
(Table 3).  



 
 
 
 

59 
 

The configuration simulated from the CMEMS Mediterranean reanalysis with the highest RMSEs is the 
sampling strategy with gliders (configuration 5, 0.6781), consisting of CTD profiles down to 500 m depth and 
separated by 6 km. The other configurations with scores higher than 0.5 are: 2d (0.6149), 3a (0.6034), 2c 
(0.5634), r (0.5491) and 2b (0.5352). Maps of DH (Figure 55) show the higher absolute value of the anomalies 
computed from these reconstructions with respect to the reconstructions with lower scores (2a, 3b).  

Configuration 4, that consists of the same sampling strategy as the reference but starting the sampling in 
January instead of in September, has high scores with the three models evaluated: 0.8356 with eNATL60, 
0.8903 with WMOP, 0.6905 with CMEMS. These values are higher than the RMSEs obtained for the reference 
configuration simulated from WMOP (0.8609) and CMEMS (0.5491), and lower for the configuration 
simulated from eNATL60 (0.9411). This means that in both seasons the reference configuration, consisting 
of CTD casts separated by 10 km and down to 1000 m, provides reconstructions with high scores. Note that 
in different periods there are different structures in the same study region, and in winter the upper layer is 
characterized by smaller scales because the mixed-layer decreases the first Rossby radius of deformation 
(ref.). Even with these differences between seasons, the reference configuration is a sampling strategy that 
provides reconstructions similar to the ocean truth in both cases. 

Comparison based on the geostrophic velocity reconstruction 
With respect to the RMSEs computed from the reconstructed geostrophic velocity magnitude, it is important 
to note that the ocean truth field also includes the ageostrophic component of the horizontal flow. As a result 
of this, high scores indicate that the reconstruction is similar to the ocean truth and that this field is 
dominated by geostrophic balance (Barceló-Llull et al., 2021). Otherwise, low scores may mean that the 
ocean truth is dominated by ageostrophic motions and/or that the reconstruction is not able to capture the 
structures of the ocean truth.  

For the reconstruction of geostrophic velocity magnitude, similarly than for the DH, the configurations 
simulated from eNATL60 have the highest scores, while the ones simulated from the CMEMS reanalysis have 
the lowest values (Figure 66, and Table 7). However, there are two differences with respect to the 
reconstruction of DH: (i) with the three models we obtain more similar values of RMSEs, and (ii) the scores 
are more different between configurations simulated from the same model. 

In this case, configuration 3b, considering uCTD profiles down to 200 m depth with a horizontal separation 
of 2.5 km, is also the sampling strategy with the lowest scores for eNATL60 and CMEMS, and the second with 
the lowest scores for WMOP, supporting the result obtained for DH. For WMOP, configuration 5, consisting 
of seven gliders sampling zonal transects simultaneously, has the lowest score. Maps of the reconstructed 
geostrophic velocity magnitude (Figures 56, 58 and 60) show that with configuration 3b the reconstructed 
field has lower magnitude than the ocean truth and the other reconstructions, except for WMOP that the 
reconstructed velocity for configuration 5 has also low values.    
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 Figure 66: RMSE-based score (RMSEs) of the reconstructed geostrophic velocity magnitude vs. the ocean truth horizontal velocity 

magnitude for each configuration (x-axis) and model (different markers) for the Mediterranean. 
 
To evaluate the best sampling strategies, we focus on the results obtained for each model. With eNATL60 
four configurations have scores higher than 0.88 (Table 7): 2d (15 km, 1000 m), 2c (12 km, 1000 m), 1 (10 km, 
500 m), and 3a (uCTD, 6 km, 500 m). The configurations 2a (5 km, 1000 m), 2b (8 km, 1000 m) and reference 
(10 km, 1000 m) have scores between 0.81 and 0.85. In all cases the reconstructed velocity has lower 
magnitude than the ocean truth (Figure 58). However, the ocean truth horizontal velocity is different for each 
configuration: for configurations 2d, 2c, 1, and 3a has lower magnitude than for configurations 2a, 2b and 
reference. This variation in magnitude may introduce the differences in RMSEs observed between the two 
sets of configurations. The reconstructed geostrophic velocity for the sampling strategy with gliders has also 
lower magnitude than the ocean truth; the RMSEs for configuration 5 is 0.7623. The sampling strategy 
considering uCTD profiles down to 200 m depth and with a horizontal spacing of 2.5 km (configuration 3b) 
provides the reconstruction with the lowest score (0.4457). The low magnitude of the reconstructed 
geostrophic velocity for all configurations simulated from eNATL60 may be due to the ageostrophic motions 
represented by the ocean truth and not resolved by our reconstruction (Barceló-Llull et al., 2021).  

Concerning the patterns of maximum horizontal velocity, the ocean truth fields have an elongated shape-
oriented northwest-southeast, while the reconstructed fields have a more circular shape (Figure 58). The 
difference in pattern is more evident in configuration 4 (winter). In summer the upper layer is stratified due 
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to solar warming, while in winter there is a mixed layer that decreases the first Rossby radius of deformation 
and, in consequence, the structures are smaller. In winter the reconstructed field is not able to represent the 
small-scales observed in the ocean truth. This is expected due to the sampling resolution (10 km) and spatial 
correlation scale (20 km) used in the optimal interpolation. The reconstructed geostrophic velocity 
magnitude for the same sampling strategy in winter (configuration 4) has a RMSEs of 0.8019 while in summer 
(reference configuration) is 0.8130, high scores in both cases. 

 
Table 7. Leaderboard of all configurations evaluated in the Mediterranean (simulated from 3 different models), disregarding 
configuration 4 that is used to analyse seasonality. Leaderboard based on the RMSE-based score of the reconstructed geostrophic 
velocity magnitude vs. the ocean truth horizontal velocity magnitude. 

Leaderboard for geostrophic velocity reconstruction 
Rank  RMSEs                      Configuration 
  01      0.8915      2d (CTD 15km 1000m Sep.) eNATL60 
  02      0.8897      2c (CTD 12km 1000m Sep.) eNATL60 
  03      0.8829      1 (CTD 10km 500m Sep.) eNATL60 
  04      0.8802      3a (uCTD 6km 500m Sep.) eNATL60 
  05      0.8467      2a (CTD 5km 1000m Sep.) eNATL60 
  06      0.8331      2b (CTD 8km 1000m Sep.) eNATL60 
  07      0.8130      r (CTD 10km 1000m Sep.) eNATL60 
  08      0.7859      2b (CTD 8km 1000m Sep.) WMOP 
  09      0.7792      r (CTD 10km 1000m Sep.) WMOP 
  10      0.7760      r (CTD 10km 1000m Sep.) CMEMS 
  11      0.7757      2a (CTD 5km 1000m Sep.) WMOP 
  12      0.7750      2d (CTD 15km 1000m Sep.) WMOP 
  13      0.7642      2c (CTD 12km 1000m Sep.) WMOP 
  14      0.7623      5 (Gliders 6km 500m Sep.) eNATL60 
  15      0.7595      2b (CTD 8km 1000m Sep.) CMEMS 
  16      0.7268      3a (uCTD 6km 500m Sep.) WMOP 
  17      0.7128      2d (CTD 15km 1000m Sep.) CMEMS 
  18      0.7050      1 (CTD 10km 500m Sep.) WMOP 
  19      0.6820      5 (Gliders 6km 500m Sep.) CMEMS 
  20      0.6796      2c (CTD 12km 1000m Sep.) CMEMS 
  21      0.6392      2a (CTD 5km 1000m Sep.) CMEMS 
  22      0.6255      3a (uCTD 6km 500m Sep.) CMEMS 
  23      0.6044      1 (CTD 10km 500m Sep.) CMEMS 
  24      0.5696      3b (uCTD 2.5km 200m Sep.) WMOP 
  25      0.4926      3b (uCTD 2.5km 200m Sep.) eNATL60 
  26      0.4892      5 (Gliders 6km 500m Sep.) WMOP 
  27      0.4109      3b (uCTD 2.5km 200m Sep.) CMEMS 

 
The sampling strategies simulated from WMOP allow the reconstruction of the geostrophic velocity field with 
a pattern similar to the ocean truth (Figure 60). In summer the maximum magnitude is distributed in an 
elongated northwest-southeast shape in both the ocean truth and the reconstructed fields for those 
configurations with RMSEs higher than 0.7 (Table 7): reference (10 km, 1000 m), 1 (10 km, 500 m), 2a-d (5, 
8, 12, 15 km, 1000 m), 3a (uCTD, 6 km, 500 m). The sampling strategy with uCTD considering profiles down 
to 200 m depth and with a horizontal spacing of 2.5 km (configuration 3b) also reconstructs an elongated 
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shape, but the magnitude is lower than for the other reconstructions (RMSEs = 0.5696). The configuration 
with the lowest score is the sampling strategy with gliders (RMSEs = 0.4892). In this case the magnitude is 
low and the pattern is more circular than the elongated shape of the ocean truth.   

Considering the best reconstructions for WMOP, the configurations with a CTD cast separation of 5 km (2a), 
8 km (2b) and 10 km (reference) represent the geostrophic velocity with a higher magnitude than the 
configurations with a horizontal spacing of 12 km (2c) and 15 km (2d) (Figure 60). Configuration 1, that has 
the same horizontal resolution than the reference but the CTD profiles sample the water column down to 
500 m instead of 1000 m, and configuration 3a, consisting of uCTD profiles down to 500 m separated by 6 
km, have scores of 0.7050 and 0.7268, respectively, and reconstruct a lower magnitude than the previous 
sampling strategies.  

In conclusion, for the configurations simulated from WMOP, the sampling strategies that provide 
reconstructions more similar to the ocean truth consists of CTD casts down to 1000 m depth and separated 
by 5, 8 and 10 km. While configurations separated by 12 and 15 km or down to 500 m depth reproduce the 
shape of the horizontal velocity magnitude but with lower values. With a cast separation of 5 or 8 km, the 
sampling domain has to be reduced in order to obtain synoptic fields, while with a separation of 12 and 15 
km we can sample the same domain as the reference configuration but faster, loosing spatial resolution but 
obtaining good reconstructions for the period evaluated. A good compromise is the reference configuration: 
CTD casts separated by 10 km and down to 1000 m depth. To sample the domain in a shorter period, an 
alternative is to release the CTD casts down to 500 m depth (configuration 1). With this sampling strategy we 
can reconstruct a shape similar to the ocean truth with a lower horizontal velocity magnitude, which 
introduces a difference in RMSEs of 0.7792-0.7050 = 0.0742 ~ 0.07 with respect to the same configuration 
but with casts down to 1000 m. Another option is to replace CTD casts for an uCTD with a horizontal spacing 
between profiles of 6 km and a vertical extension of 500 m. This strategy has the advantage to sample the 
same domain in 1.75 days in comparison to 4.31 days for the reference configuration and 3.06 days for 
configuration 1.  

Concerning seasonality, in winter the pattern of maximum horizontal velocity magnitude is different than in 
summer as different structures are present in the region of study (configuration 4 in Figure 60), but the 
sampling strategy consisting of CTD casts separated by 10 km and down to 1000 m allows a reconstruction 
with a RMSEs of 0.7749, similar to the value obtained in summer (0.7792).  

The configuration simulated from the CMEMS Mediterranean reanalysis with the highest scores is the 
reference (0.7760), followed by configurations 2b, 2d, 5, 2c, 2a, 3a and 1 (Table 7), all of them representing 
a similar pattern of geostrophic velocity with an underestimation of the magnitude with respect to the ocean 
truth (Figure 56). The reconstruction with the lowest scores is from configuration 3b (0.4109); the magnitude 
captured by this sampling strategy is lower than for the other configurations. Regarding seasonality, the 
ocean truth in winter shows higher small-scale variability than in summer. The reconstruction smooths the 
fields, but the overall pattern is similar, with a slight underestimation of the magnitude (RMSEs = 0.6871). 

Analysis in the Atlantic 

Comparison based on the DH reconstruction 
The RMSE-based score (RMSEs) computed from the reconstructed DH and ocean truth SSH anomaly fields in 
the Atlantic is represented in Figure 67 for each model and configuration, and in the leaderboard (Table 8). 
The configurations simulated from the CMEMS global reanalysis have similar scores, while the configurations 
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from eNATL60 have important dissimilarities between them. The eNATL60 has higher resolution (hourly and 
1/60º) than the CMEMS reanalysis (daily and 1/12°), hence, each model resolves different dynamics and 
distinct results are expected.  

 
Figure 67: RMSE-based score (RMSEs) of the reconstructed DH anomaly vs. the ocean truth SSH anomaly for each configuration (x-

axis) and model (different markers) for the Atlantic. 

For the sampling strategies simulated from the CMEMS reanalysis, the reconstruction with the highest score 
is configuration 3b (RMSEs = 0.7038): underway CTD replacing CTD rosette casts, horizontal separation 
between profiles of 2.5 km, vertical extension of 200 m depth, and sampling time 1.75 days. This is the 
configuration with the highest spatial resolution and shorter sampling time. The reconstruction with the 
second highest scores is for configuration 2d (0.6536), the configuration with the lower spatial resolution (15 
km) and higher sampling time (5.19 days). The important dissimilarities between both sampling strategies 
and the smooth fields of reconstructed DH (Figure 61) difficult the interpretation of this result and make 
necessary the analysis of the reconstructed geostrophic velocity magnitude.  

A result that is clear from the remaining configurations is that the sampling strategies consisting of CTD 
profiles down to 1000 m depth (r, 2b, 2c, 2a) have similar scores of ~0.6, while the strategies that sample the 
water column down to 500 m depth (5, 3a, 1) have lower scores. The DH reconstructed from the sampling 
strategies with CTD profiles down to 1000 m has a pattern similar to the ocean truth, while the reconstruction 
of the configurations with profiles down to 500 m do not capture this feature and the fields are characterized 
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by a smooth north-east south-west decrease (Figure 61). In consequence, in the Atlantic, considering the 
results from the CMEMS reanalysis with a spatial resolution of 1/12º, the sampling of the water column down 
to 1000 m is key for the reconstruction of DH at the upper layer. The difference in RMSEs between the 
reference configuration and the same sampling strategy but with profiles down to 500 m (configuration 1) is 
0.6180 - 0.4986 = 0.1194 ~ 0.12.  

Concerning seasonality, configuration 4 has a RMSEs of 0.2735, much lower than the reference configuration 
(same configuration but in summer). This suggests that the sampling strategy that provides good 
reconstructions in summer, does not capture the structures present in the region of study in winter (Figure 
61).   

 

Table 8. Leaderboard of all configurations evaluated in the Atlantic (simulated from 2 different models), disregarding configuration 
4 that is used to analyse seasonality. Leaderboard based on the RMSE-based score of the reconstructed DH anomaly vs. the ocean 
truth SSH anomaly.  

Leaderboard for DH reconstruction 
Rank  RMSEs                      Configuration 
  01      0.8825      2a (CTD 5km 1000m Sep.) eNATL60 
  02      0.8821      r (CTD 10km 1000m Sep.) eNATL60 
  03      0.8817      2c (CTD 12km 1000m Sep.) eNATL60 
  04      0.8681      2b (CTD 8km 1000m Sep.) eNATL60 
  05      0.8436      2d (CTD 15km 1000m Sep.) eNATL60 
  06      0.7038      3b (uCTD 2.5km 200m Sep.) CMEMS 
  07      0.6536      2d (CTD 15km 1000m Sep.) CMEMS 
  08      0.6180      r (CTD 10km 1000m Sep.) CMEMS 
  09      0.6160      2b (CTD 8km 1000m Sep.) CMEMS 
  10      0.6020      2c (CTD 12km 1000m Sep.) CMEMS 
  11      0.5962      2a (CTD 5km 1000m Sep.) CMEMS 
  12      0.5349      5 (Gliders 6km 500m Sep.) CMEMS 
  13      0.5084      3a (uCTD 6km 500m Sep.) CMEMS 
  14      0.4986      1 (CTD 10km 500m Sep.) CMEMS 
  15      0.4207      3a (uCTD 6km 500m Sep.) eNATL60 
  16      0.4116      1 (CTD 10km 500m Sep.) eNATL60 
  17      0.3363      5 (Gliders 6km 500m Sep.) eNATL60 
  18      0.2152      3b (uCTD 2.5km 200m Sep.) eNATL60 

 

With eNATL60 the difference between the reconstruction of configurations considering profiles down to 
1000 m depth versus only sampling the upper 500 m is more evident. The first set of sampling strategies (r, 
2a-d) have scores higher than 0.84, while the second set (3a, 1, 5) have scores below 0.42. Configuration 3b, 
only considering profiles down to 200 m depth, has the lowest score (0.2152). The dissimilarities between 
reconstructions can be clearly observed in the DH maps (Figure 63): for the reference configuration and 
configurations 2a-d the reconstructed DH has a magnitude and pattern similar to the ocean truth, while for 
the other configurations the magnitude is underestimated. This reinforces the conclusion obtained from the 
CMEMS simulated configurations. In the Atlantic study region, CTD profiles that sample the water column 
down to 1000 m depth can capture the SSH features observed in the ocean truth. This conclusion is supported 
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by simulating the same set of configurations with two models with distinct horizontal resolutions and, hence, 
resolving different dynamics.  

Configuration 4 simulated from eNATL60 reconstructs the DH with a low RMSEs of 0.2738, similar to the 
result obtained for the other model. The difference in RMSEs between the reconstructed DH in summer vs. 
in winter with the same sampling strategy is 0.8821 - 0.2738 = 0.6083 ~ 0.61; with the CMEMS reanalysis this 
difference is 0.6180 - 0.2735 = 0.3445 ~ 0.34. One explanation for these dissimilarities detected from two 
models with different spatial and temporal resolutions may be that in winter the structures evolve faster 
than in summer and the lack of synopticity in the pseudo-observations introduces significant errors in the 
reconstruction.  

Comparison based on the geostrophic velocity reconstruction 
The RMSEs computed for the reconstructed geostrophic velocity magnitude supports the results derived 
from the analysis of DH. The sampling strategies consisting of CTD profiles down to 1000 m depth (r, 2a-d) 
have the highest scores for both models (Figure 68 and Table 9). Considering the configurations simulated 
from CMEMS with CTD profiles down to 500 m depth, configuration 5 has a score of 0.5847, configuration 1 
has a score of 0.5022 and configuration 3a has the lowest score, 0.4571. Strikingly, for this model 
configuration 3b has a RMSEs relatively high (0.6143). Maps of geostrophic velocity magnitude (Figure 62) 
show that for this model the reference configuration and configurations 2a-d have higher magnitude than 
for the other configurations, and this magnitude is similar to the ocean truth horizontal velocity, with an 
overall slight underestimation. The reconstructions with the highest scores have slight dissimilarities in the 
magnitude of geostrophic velocity that are translated in distinct RMSEs: configuration 2d has the highest 
scores because the reconstructed magnitude is higher and, hence, more approximate to the ocean truth. The 
configurations with profiles down to 500 m depth have a comparable magnitude between them and this is 
~50% smaller than the ocean truth. The pattern of geostrophic velocity magnitude for the configuration with 
gliders is closer to the ocean truth within the region of study, this results in a higher score. Configuration 3b, 
with profiles down to 200 m depth, has higher magnitude than the configurations with profiles down to 500 
m depth. The reason for this discrepancy may be that the spatial resolution of 2.5 km captures small-scale 
variability with higher horizontal velocity. However, the CMEMS global reanalysis has daily and 1/12º 
horizontal resolution that prevent the pseudo-observations to capture small-scales. 
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Figure 68: RMSE-based score (RMSEs) of the reconstructed geostrophic velocity magnitude vs. the ocean truth horizontal velocity 

magnitude for each configuration (x-axis) and model (different markers) for the Atlantic. 
 
For the configurations simulated from eNATL60, the sampling strategies with profiles down to 1000 m have 
a magnitude and pattern closer to the ocean truth (Figure 64). The magnitude of geostrophic velocity for the 
configurations with profiles down to 500 m depth is ~50% lower than the ocean truth, and for configuration 
3b this underestimation is 60% lower than the ocean truth. 
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Table 9. Leaderboard of all configurations evaluated in the Atlantic (simulated from 2 different models), disregarding configuration 
4 that is used to analyse seasonality. Leaderboard based on the RMSE-based score of the reconstructed geostrophic velocity 
magnitude vs. the ocean truth horizontal velocity magnitude. 

Leaderboard for geostrophic velocity reconstruction 
Rank  RMSEs                      Configuration 
  01      0.9494      2a (CTD 5km 1000m Sep.) eNATL60 
  02      0.9417      2b (CTD 8km 1000m Sep.) eNATL60 
  03      0.9116      2c (CTD 12km 1000m Sep.) eNATL60 
  04      0.9109      2d (CTD 15km 1000m Sep.) eNATL60 
  05      0.8999      r (CTD 10km 1000m Sep.) eNATL60 
  06      0.8189      2d (CTD 15km 1000m Sep.) CMEMS 
  07      0.8075      2a (CTD 5km 1000m Sep.) CMEMS 
  08      0.8015      r (CTD 10km 1000m Sep.) CMEMS 
  09      0.8002      2b (CTD 8km 1000m Sep.) CMEMS 
  10      0.7934      2c (CTD 12km 1000m Sep.) CMEMS 
  11      0.6143      3b (uCTD 2.5km 200m Sep.) CMEMS 
  12      0.5847      5 (Gliders 6km 500m Sep.) CMEMS 
  13      0.5022      1 (CTD 10km 500m Sep.) CMEMS 
  14      0.4571      3a (uCTD 6km 500m Sep.) CMEMS 
  15      0.4369      1 (CTD 10km 500m Sep.) eNATL60 
  16      0.4130      3a (uCTD 6km 500m Sep.) eNATL60 
  17      0.3814      5 (Gliders 6km 500m Sep.) eNATL60 
  18      0.2132      3b (uCTD 2.5km 200m Sep.) eNATL60 

 
Concerning seasonality, configuration 4 has a RMSEs lower than for the reference configuration for both 
models: 0.4651 for eNATL60 (vs. 0.8999) and 0.6097 for CMEMS (vs. 0.8015). With eNATL60 the 
reconstructed field is smoother than the ocean truth but the overall pattern shows some similarity (Figure 
64). For CMEMS, the reconstructed and ocean truth fields within the region of comparison (domain of 
configuration 2a) have some resemblance, but for the whole domain (Figure 62) the cells of maximum and 
minimum velocity are not properly represented by the reconstruction. 

9.4. Conclusions 

Mediterranean 

Best sampling strategies 
To evaluate the best sampling strategies in the Mediterranean, we focus on the results obtained for each 
model considering the two variables analysed: DH and geostrophic velocity magnitude. 

The configuration simulated from the CMEMS Mediterranean reanalysis with the leading RMSEs for the DH 
reconstruction is the sampling strategy with gliders, followed by the configurations considering CTD casts 
down to 1000 m and separated by 8, 10, 12 and 15 km, and configuration 3a (uCTD, 6 km of horizontal spacing 
and a vertical extension of 500 m). The best score for the geostrophic velocity reconstruction is for the 
reference configuration. The other configurations capture a similar pattern of geostrophic velocity, while the 
magnitude for all configurations is lower than the ocean truth horizontal velocity. 

With eNATL60 seven configurations (reference, 1, 2a-d, 3a) have high scores for the reconstruction of DH 
(RMSEs>0.93) and geostrophic velocity magnitude (RMSEs>0.81). In all cases the reconstructed velocity has 
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inferior magnitude than the ocean truth horizontal velocity. However, the ocean truth has distinct magnitude 
for each configuration and this dissimilarity may introduce the small differences in the RMSEs between 
configurations. This suggests that distinct strategies provide reconstructions similar to the ocean truth and, 
hence, they are good options. The reconstructed geostrophic velocity for the sampling strategy with gliders 
has also lower magnitude than the ocean truth and the RMSEs for this configuration is inferior than for the 
other configurations. The smaller magnitude of the reconstructed geostrophic velocity for all configurations 
may indicate that the ocean truth has ageostrophic motions not resolved by our reconstruction (Barceló-Llull 
et al., 2021). 

For the sampling strategies simulated from WMOP, the configurations that consider CTD casts down to 1000 
m and separated by different horizontal resolutions (reference, 2a-d) have the leading scores for the DH 
reconstruction. Configurations that sample the water column down to 500 m depth have inferior scores but 
they are still high. For the same strategy consisting of CTD casts separated by 10 km, the RMSEs improvement 
when sampling the water column down to 1000 m instead of 500 m is 0.07 in the DH reconstruction, even if 
this configuration is slower (4.3 days vs. 3.1 days).  

Regarding the velocity field, the sampling strategies that provide reconstructions more similar to the ocean 
truth consists of CTD casts down to 1000 m depth and separated by 5, 8 and 10 km. Configurations separated 
by 12 and 15 km or down to 500 m depth reproduce the shape of the horizontal velocity magnitude but with 
inferior values. A good compromise considering the advantages of each sampling strategy is the reference 
configuration: CTD casts separated by 10 km and down to 1000 m depth. To sample the domain faster (3.1 
days vs. 4.3 days), a valid strategy is configuration 1 (CTD profiles down to 500 m depth) from which the 
reconstructed geostrophic velocity field has a smaller magnitude that is responsible for a decrease of 0.07 in 
the RMSEs, while the pattern is maintained similar to the ocean truth. An even faster valid sampling (1.8 
days) consists of replacing rosette CTD casts for an underway CTD with a horizontal spacing between profiles 
of 6 km and a vertical extension of 500 m; the RMSEs reduction in this case is 0.05, which makes this 
configuration a better option than configuration 1. Note that the variability and scales resolved by WMOP 
have been validated by an extensive set of real observations in the western Mediterranean (Mourre et al., 
2018). This implies that the results obtained from WMOP may be more approximate to what we would have 
in the real ocean. In addition, the conclusions from WMOP are consistent with the results obtained from the 
other models.  

Sampling strategy not appropriate for our objective 
A result that is clear from the analysis in the Mediterranean is that the sampling strategy in which CTD rosette 
casts are replaced by an underway CTD sampling one profile every 2.5 km and with a vertical extension of 
200 m is the configuration with the lowest scores for eNATL60 and CMEMS, and the second with the lowest 
scores for WMOP for the two variables analysed. Maps of reconstructed geostrophic velocity show that for 
this configuration the reconstructed field has lower magnitude than for the ocean truth and the other 
reconstructions, with the exception of configuration 5 for WMOP. This suggests that profiles deeper than 200 
m depth are needed to reconstruct the DH and geostrophic velocities at the ocean upper layer, while the 
decrease of the horizontal separation between profiles does not introduce improvements with respect to the 
other configurations.  

Impact of season 
Configuration 4, that consists of the same sampling strategy as the reference but in winter instead of in 
summer, has high scores for the DH reconstruction with the three models. These values are larger than for 
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the reference configuration for WMOP and CMEMS, and lower for eNATL60. This indicates that in both 
seasons the reference configuration, consisting of CTD casts separated by 10 km and down to 1000 m, 
provides reconstructions of DH with high scores.  

Note that different dynamics characterize the region of study in each season. In summer the upper layer is 
stratified due to solar warming, while in winter there is a mixed layer that decreases the first Rossby radius 
of deformation and, in consequence, the structures are smaller. The sampling resolution of 10 km and the 
spatial correlation scale of 20 km applied to the optimal interpolation prevent the representation of spatial 
scales smaller than ~20 km. This results in smoother reconstructed fields of geostrophic velocity magnitude 
in comparison to the ocean truth in winter. Besides this, with eNATL60 the RMSEs in winter is still elevated 
(0.8019) and comparable to the score obtained in summer (0.8130). For WMOP the outcome is similar and 
the RMSEs in winter is 0.7749 in front of 0.7792 in summer. The ocean truth from CMEMS also shows higher 
small-scale variability than in summer and than in the reconstruction; in this case the RMSEs is 0.6871 vs. 
0.7760 in summer. In conclusion, even with distinct dynamics, the reference configuration is a sampling 
strategy that provides reconstructions similar to the ocean truth in both seasons. 

Atlantic 

Best sampling strategies 
The main conclusion derived from the analysis in the Atlantic is that sampling strategies consisting of CTD 
profiles down to 1000 m depth (reference, 2a-d) provide reconstructions with higher scores than the 
strategies that sample the water column down to 500 m depth (1, 3a, 5). This is observed with configurations 
simulated from both models and for the reconstructed DH and geostrophic velocity magnitude. The 
geostrophic velocity reconstructed from the strategies that sample only the upper 500 m depth has a 
magnitude ~50% smaller than the ocean truth total horizontal velocity, while the strategies that sample the 
water column down to 1000 m reconstruct a magnitude closer to the ocean truth. In consequence, in the 
Atlantic study region the sampling of the water column down to 1000 m is key for the reconstruction of DH 
and geostrophic velocity magnitude at the upper layer. This conclusion is supported by simulating the same 
set of configurations with two models with distinct spatial and temporal resolutions and, hence, resolving 
different dynamics.  

Sampling strategies consisting of CTD profiles down to 1000 m depth and with a horizontal separation of 5, 
8, 10, 12 and 15 km are good options to reconstruct fine-scale currents (~20 km) at the ocean upper layer in 
the region of study in the period analysed. The differences in the horizontal spacing of these strategies imply 
that distinct sizes of the domain can be sampled for a fixed sampling period. The reference configuration, 
which considers a distance between casts of 10 km, is a good compromise between horizontal resolution, 
spatial coverage and sampling duration. 

Sampling strategy not appropriate for our objective 
From eNATL60, configuration 3b, in which rosette CTD casts are replaced by an underway CTD sampling one 
profile every 2.5 km and with a vertical extension of 200 m, reconstructs the geostrophic velocity field with 
an underestimation of 60% in magnitude with respect to the ocean truth. This result is not consistent with 
the outcome from the CMEMS reanalysis. However, the eNATL60 horizontal resolution is more suited for the 
simulation of this sampling strategy and, hence, we disregard this sampling strategy as a good option for our 
purpose.  
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Impact of season 
The analysis of seasonality suggests that the reference configuration, that provides good reconstructions in 
summer, does not capture the structures present in the region of study in winter. One explanation may be 
that in winter the structures evolve faster than in summer and the lack of synopticity in the pseudo-
observations introduces significant errors in the reconstruction.  

9.5. Perspectives 
The next step is to evaluate an additional strategy for SWOT validation consisting of station-keeping gliders, 
i.e., gliders working as moorings (called virtual moorings) following the recommendations by Wang et al. 
(2018).  

The real multi-platform experiment (FaSt-SWOT12) will be conducted in the western Mediterranean Sea 
during the SWOT fast-sampling phase in 2023. For the design of FaSt-SWOT, we will follow the 
recommendations extracted from this study. In addition, codes developed in this task are available in GitHub, 
and they can be used by the SWOT Science Team to evaluate sampling strategies in other regions selected 
for the SWOT validation phase. These codes will remain open and free and will serve for future design of in 
situ multi-platform experiments.  

10. Evaluation of a reconstruction method based on machine-learning 
techniques  

10.1. Approach 
The CTD pseudo-observational set-up used here is the reference configuration, in which CTD casts are 
separated by 10 km. The eNATL60 degraded daily outputs are used to obtain three data sets needed as inputs 
to the reconstruction model (Figure 69): 

• First, it is necessary to generate pseudo-observations of temperature and salinity at the ocean 
surface every 5 days during the period of available model outputs. These pseudo-observations are 
obtained by linearly interpolating the model outputs on specific dates to the reference configuration 
grid. These dates are defined as the central date in a time window of 5 days (the reference 
configuration sampling duration is 4.3 days) for the period between 1 July 2009 and 30 September 
2010. With this approximation, the pseudo-observations represent a stationary state of the ocean, 
i.e., they do not include the temporal variability of real in situ observations.   

• Secondly, the spatial Optimal Interpolation (OI) algorithm is applied to the pseudo-observations 
obtaining the “Lower Quality Field”. Such a field receives this name as the Neural Network model 
tries to improve it. The interpolation grid has a horizontal resolution of 2 km and we assume a spatial 
correlation scale of 25 km. 

• Lastly, a “Ground Truth” field is defined by linearly interpolating the model outputs to the OI grid. 
This will enable the definition of the reconstruction error and will be useful for making the algorithm 
learn. 

 

                                                 
12 https://www.swot-adac.org/campaigns/fast-swot/ 

https://www.swot-adac.org/campaigns/fast-swot/
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Figure 69: Representation of the three different data sets for the whole year needed for the training/validation/testing 

of the 4D-VarNet.  
 
These three data sets are introduced into the Neural Network model, which from now on will be referred to 
simply as the model. They are split into three different groups depending on the period (Figure 70): 

• The training set is used to adjust the model's parameters. These parameters are modified by the 
algorithm through iterative processes, they are the equivalent of the weights in the linear regression. 
One important aspect is that the number of parameters should never be greater than the quantity 
of data.  

• The validation set is used to adjust the model's hyperparameters. Hyperparameters are tuned 
manually, for example at which rate does the Neural Network learn, i.e. the learning rate.  

• The test set is then used to find the reconstruction and it has been kept unseen for the model during 
the whole process. This permits retrieving the true performance of the model and must coincide with 
the dates of reconstruction (1-5 September 2009). 

 

 
Figure 70: Temporal splitting of the datasets. 
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10.2. Analysis of the results 
For the reconstructed sea surface temperature (SST) field we observe that globally the structure is not 
improved with 4D-VarNet (Figure 71), however the SST magnitude is increased and more similar to the 
Ground Truth. This results in a reduction of the root-mean-square error (RMSE) compared to the 
reconstruction with the spatial optimal interpolation (Table 10).  

 

 
Figure 71: Sea Surface Temperature (SST) from the Ground Truth on 3 September 2009 and the reconstructed fields after applying 

the spatial optimal interpolation vs. the 4D-VarNet.  
 
The reconstruction of sea surface salinity (SSS) through the 4D-VarNet allows the representation of two fronts 
not detected in the optimally interpolated field (Figure 72). In this case the RMSE is also reduced in 
comparison to the SSS reconstructed through the spatial optimal interpolation (Table 10). However, the 
improvement in SSS is lower than for the SST reconstruction. 

 

 
Figure 72: Sea Surface Salinity (SSS) from the Ground Truth on 3 September 2009 and the reconstructed fields after applying the 

spatial optimal interpolation vs. the 4D-VarNet.  
 
Our results suggest that the 4D-VarNet may improve the reconstructions done through the spatial optimal 
interpolation. As shown in Table 10, the RMSE computed between reconstructed fields and the 
corresponding ocean truth on the central date of the time window is reduced after applying the 4D-VarNet. 
However, the reconstruction highly depends on the date considered, as well as on the quality of the optimally 
interpolated field. Hence, it is not assured that improvement can always be found.  
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Table 10: RMSE (ºC for SST) computed between reconstructed fields and the corresponding ocean truth on 3 September 2009, 
applying the spatial optimal interpolation vs. the 4D-VarNet method. 
 

 Optimal Interpolation 4D-VarNet Improvement 
SST 1.00 0.89 11% 
SSS 0.65 0.59 8.5% 

 

10.3. Conclusions and perspectives  
In the two cases analysed, the 4D-VarNet can improve the “Lower Quality Field”. For SST the reconstruction 
introduces an increase of the magnitude more similar to the ocean truth, while the SSS reconstructed field 
captures two fronts not detected by the optimal interpolation. The reason for this improvement may be that 
the autoencoder captures better non-linearities. However, these results depend on the quantity and quality 
of the input data. 

Currently, more advances are being done in order to include SWOT, nadir altimetry and SST satellite 
observations in order to compute directly the sea surface currents. This approach would enable deeper 
architectures to retrieve the dynamics as a greater quantity of data is available.  

11. Evaluation of a reconstruction method based on model data 
assimilation  

11.1. Approach 
For this study, we use the eNATL60 model outputs as the Nature Run (NR). The NR is considered to represent 
the true ocean state evolution in this approach, and thus, it should represent the motions and scales of the 
ocean processes as good as possible. In OSSEs, the NR is used to generate pseudo-observations, that should 
resemble the real ones, and generate a similar impact in the model after assimilation (Halliwell et a. 2014). 
This NR is also used to validate the model after data assimilation. Differences between NR and CR can be 
seen in Figure 73, that illustrates the SLA mean fields on 4 September 2009 from the NR and CR models with 
the along-track pseudo-observations. 

The WMOP model covers the western Mediterranean Sea, from Gibraltar in the west to Corsica and Sardinia 
in the East. Its capacity to ingest both large-scale observations all over the domain and high-resolution dense 
observations in a reduced region has been demonstrated in several studies (Hernández-Lasheras and 
Mourre, 2018, Hernández-Lasheras et al., 2021). Furthermore, for the forecast to perform optimally, high-
resolution observations in a reduced area must be combined with large-scale observations in the whole 
domain to constrain the circulation.  

We use simulated observations from different observing platforms (Section 6): sea level anomaly (SLA) from 
nadir altimetry, remote sensing sea surface temperature (SST), Argo temperature and salinity profiles and 
CTD observations in the reference configuration (Figures 74 and 75).  
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Figure 73. SLA mean fields on 4 September 2009 from the Nature Run (left) and Control Run (right) models with along-track pseudo-

observations within a +- 2 days time window overplotted.  

 

 
Figure 74. SLA in m (left), SST in ºC (center) and Argo position (right) of the pseud-observations assimilated on 4 September 2009. 

 
Four experiments assimilating different datasets are conducted to evaluate the capability of the model to 
reconstruct the dynamic height and the surface circulation using CTD observations from the reference 
configuration:  

• Experiment 1: control run (CR, no assimilation);  
• Experiment 2: assimilation of SLA, SST and Argo (generic dataset used operationally); 
• Experiment 3: assimilation of SLA, SST, Argo and CTDs;  
• Experiment 4: assimilation of CTDs only.  

For the two experiments assimilating SLA, SST and Argo (experiments 2 and 3), we start the simulation with 
a 3-day spin-up, starting on 2 September 2009 from the output of an analysis including assimilation of SLA, 
SST and Argo. Then, a second analysis is performed on 5 September (central day for the CTD sampling). All 
the CTD observations are considered as synoptic in the analysis. 
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Figure 75. Area of the experiments and CTD cast position (color represent the time of the CTD cast).   

11.2. Analysis of the results 
The different WMOP data assimilation experiments are compared against the NR fields on 5 September 2009. 
We first evaluate the capability of the assimilation to reconstruct temperature and salinity 3D fields, by 
comparing the model forecast against the NR. The comparison is performed over a 3kmx3km grid including 
the CTD sampling region (red box in Figure 75), and down to 800 m depth. Figure 76 shows the normalized 
RMSD (nRMSD = RMSDassim / RMSDCR). Values below 1 indicate an improvement due to the data assimilation. 
Figure 76 shows that the assimilation of SLA, SST and Argo (experiment 2) already leads to an improvement 
in comparison to the control run fields. A significant improvement is achieved when introducing only CTD 
observations into the system (experiment 4). The normalized RMSD is reduced around 40% both for 
temperature and salinity fields, and also for density. When assimilating SLA, SST and Argo in the bigger region 
and local high-resolution CTD pseudo-observations (experiment 3), the normalized RMSD is very similar to 
the values obtained for experiment 4, with a slight improvement for salinity. Note that all the simulations 
assimilating data (experiments 2, 3 and 4) reduce the RMSD with the NR fields compared to the control run 
simulation (experiment 1, no data assimilation). However, the bias (defined as the mean difference between 
WMOP and NR fields over each depth layer) is higher in deeper layers when including data assimilation (not 
shown). The difference between WMOP reconstructed temperature and salinity fields and the NR has a 
spatial structure also observed in the difference between the reconstructed dynamic height at the upper 
layer and the NR. Figure 77 shows the vertically averaged difference between the reconstructed temperature 
from experiments 1, 4 and 2 and the corresponding NR field, revealing a pattern similar to the difference in 
dynamic height at the upper layer (calculated from 3D density fields) between the WMOP experiments and 
the NR. 
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Figure 76. Root-mean-square difference (RMSD) between the reconstructed fields using WMOP data assimilation and the NR on the 

5 of September, normalized by the RMSD of the CR with respect to the NR; for temperature, salinity and density fields in the CTD 
sampling region. Values below 1 indicate an improvement due to data assimilation. 

 

 
Figure 77. Top row: Spatial distribution of the vertically averaged difference between reconstructed temperature from experiments 

1, 4 and 2, and the corresponding NR field. Bottom row: Difference between reconstructed and NR dynamic height at the upper 
layer (calculated from 3D density fields). 

 
We then compare the reconstructed SLA and SST fields from each experiment to the NR, in the whole domain 
and in the CTD sampling region to evaluate the impact in each area. For both variables and in each region we 
interpolate the NR fields onto the WMOP grid. The comparison for SLA fields in the CTD sampling region is 
done through the bias (defined as the mean difference), RMSD, centred RMSD (cRMSD) and correlation 
coefficient (Table 11). The first three metrics are related by the following expression: RMSD² = Bias² + 
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cRMSD². The bias is significant in all experiments and increases with respect to the CR when we assimilate 
CTD pseudo-observations, while it decreases when only assimilating generic observations. The correlation 
increases for all data assimilative simulations. When only assimilating generic observations (SLA, SST, Argo) 
the correlation increases to 0.95, while using only CTD pseudo-observations slightly outperform the CR. The 
use of CTD together with generic pseudo-observations improves the reconstruction with respect to the CR, 
but gives a lower correlation than the generic experiment (0.87). The RMSD for all the experiments has a 
correspondence with the bias. The RMSD can be decomposed into bias and centred RMSD, which does not 
take into account this mean deviation. For the cRMSD the results reveal similar conclusions as for the 
correlation: the assimilation of CTD pseudo-observations (experiment 4) improves the reconstruction of the 
CR, which is further outperformed when including generic observations (experiment 3), while the best results 
are obtained when only assimilating SLA, SST and Argo (experiment 2). This can be summarized by Figure 78, 
where the normalized cRMSD over the whole domain and in the specific CTD sampling region has the lowest 
values for experiment 2. 

Table 11. Bias, RMSD, cRMSD and correlation coefficient of the SLA fields in the CTD sampling region between the different 
simulation experiments and the NR. The first three metrics are related by the following expression: RMSD² = Bias² + cRMSD². 

 Bias (m) RMSD (m) CRMSD (m) Correlation 

CR -0.055 0.059 0.022 0.73 

CTD -0.063 0.065 0.018 0.75 

SLA+SST+Argo -0.044 0.045 0.011 0.95 

SLA+SST+Argo+CTD -0.057 0.058 0.013 0.87 
          

 
Figure 78. Centred RMSD between the reconstructed fields using WMOP data assimilation and the NR on the 5 of September, 

normalized by the centred RMSD of the CR with respect to the NR, for SLA in the whole domain and in the CTD sampling region. 

 
In the case of SST the bias does not have a significant contribution to the RMSD (not shown) and we use the 
normalized RMSD metric for the comparison (Figure 79). In the whole modelling domain, the impact of 
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assimilating CTD pseudo-observations is very slight and the reduction of the RMSD with respect to the CR is 
mainly obtained with the assimilation of SST. Focusing on the CTD sampling region, assimilation of only CTD 
pseudo-observations leads to an improvement on the reconstruction, outperforming experiment 2 
(assimilation of SLA, SST and Argo). When all the pseudo-observations are assimilated (experiment 4), the 
normalized RMSD is reduced with respect to the other two experiments.  

 

 
Figure 79. RMSD between the reconstructed fields using WMOP data assimilation and the NR on the 5 of September, normalized by 

the RMSD of the CR with respect to the NR; for SST in the whole domain and in the CTD sampling region. 

 

We finally analyse the reconstructed SSH and mean currents in a wider region than the CTD sampling area 
(Figure 80). In this qualitative comparison we can observe the differences between CR and NR circulation 
patterns, not only in the sampling region but also in a wider area. A strong cyclonic eddy is detected west of 
Mallorca in both simulations, while an anticyclone is observed in the northern part but displaced from one 
simulation to the other. Assimilating pseudo-observations, the reconstructed fields still represent the two 
eddies. While in these cases the anticyclone in the northern part (40.8ºN, 2ºE) is not as intense as in the CR, 
it still generates an anticyclonic circulation in the northern part of the CTD sampling region that does not 
correspond with the eddy observed in the NR. 
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Figure 80. SSH and mean currents for the NR (top left), CR (top centre) and the three experiments assimilating different sets of 

pseudo-observations (bottom). 

11.3. Conclusions and perspectives 
The WMOP data assimilation system corrects the reconstructed fields of the control run, providing forecasts 
that are closer to the NR simulation. While the assimilation of only CTD pseudo-observations reduces the 
error for temperature, salinity and density 3D fields, the SLA reconstructed field has a higher error and a 
lower correlation than when using only generic observations (SLA, SST and Argo). The SSH from the 
assimilation analysis is coherent with the dynamic height computed from density fields obtained from 
temperature and salinity reconstructions. The discrepancy between the performance of the different 
experiments on the reconstruction of temperature and salinity fields vs. SLA may be related to the fact that 
the vertically averaged difference between reconstructed and NR T and S fields has a spatial structure (i.e., it 
is uneven along the domain) that impacts the reconstruction of dynamic height. These discrepancies still 
need to be further explored to be fully understood. 

12. Mapping nadir altimetry using drifters through the MIOST tool  

12.1. Approach 
For this study, different experiments are performed (Table 12). In experiment 1 we use only nadir altimetry 
pseudo-observations. In experiment 2 altimetry pseudo-observations are merged with total horizontal 
currents derived from drifters. In this case we use 10% of the simulated drifters (extracted randomly), which 
is a number of drifters similar to the real density in the Mediterranean at present. In experiment 3 we merge 
nadir altimetry with 3 times the number of drifters used in experiment 2. For experiments 2 and 3 we use 
both the geostrophic and ageostrophic modes of the MIOST tool. We take as input the total horizontal 
currents derived from the simulated drifter trajectories. The algorithm separates the geostrophic and 
ageostrophic components of the drifter pseudo-observations.  
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Table 12: Summary table of the different experiments conducted to evaluate the MIOST technique. For the ageostrophic components, 
the temporal decorrelation scale is 2 days (T) and the spatial decorrelation scale is 500 km (L). 

Experiments Nadir altimetry Drifters Geostrophic 
component 

Ageostrophic 
components 

(div + rot) 

Experiment 1 All satellites 0 Yes No 

Experiment 2 All satellites 
10% (~actual number 

of driters) 
u_tot, v_tot 

Yes 
Yes 

(L=500km, 
T=2days) 

Experiment 3 All satellites 
30% (~3x actual 

number of driters) 
u_tot, v_tot 

Yes 
Yes 

(L=500km, 
T=2days) 

12.2. Analysis of the results 

Comparison in SSH 
First, MIOST reconstructions of SSH are analysed against the degraded native run (eNATL60). As in the 
collaborative project of the ocean data challenge13, the RMSE-based score (RMSEs) is calculated for the whole 
domain and over the whole period (1 year), and is defined as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)  =  1 −  
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)

𝑅𝑅𝑅𝑅𝑅𝑅(𝑅𝑅𝑅𝑅𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
 

where RMS is the root mean square function and with: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)  =  �
1
𝑁𝑁
�(𝑅𝑅𝑅𝑅𝐻𝐻𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡, 𝑚𝑚)  −  𝑅𝑅𝑅𝑅𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡, 𝑚𝑚))2
𝑁𝑁

𝑟𝑟=1

 

where N is the number of grid points included in the study domain. 

Table 13 shows the temporal average and temporal standard deviation of the RMSEs(t) calculated between 
SSH reconstructions and the native run (or ocean truth). The temporal standard deviation gives an insight on 
the temporal stability of the reconstruction. The addition of velocity data from drifters (experiments 2 and 
3) slightly improves the mean RMSEs and its temporal stability with respect to experiment 1. Figure 81 shows 
the temporal evolution of the RMSE (non-normalized) for the three experiments. The three time series are 
similar, however the RMSE for the experiments with drifters (especially for experiment 3) is lower in some 
periods. For example, in the period between 1 July 2009 and 15 August 2009, in the months of November 
and December 2009, and at the end of the time series. 

                                                 
13 https://github.com/ocean-data-challenges/2020a_SSH_mapping_NATL60 

https://github.com/ocean-data-challenges/2020a_SSH_mapping_NATL60
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Table 13: Temporal average and temporal standard deviation of the RMSEs (µ(RMSEs) and σ(RMSEs), respectively) calculated between 
MIOST reconstructions of SSH and the native run for the three experiments. 

Experiments µ(RMSEs) σ(RMSEs) 

Experiment 1 0.940 0.027 

Experiment 2 0.941 0.026 

Experiment 3 0.942 0.025 

 

 

Figure 81: RMS of the differences between the reconstructed and native run SSH for each reconstructed day. The three lines 
represent the different experiments: in blue experiment 1, in green experiment 2 and in orange experiment 3. 

 
The RMS of the differences is also calculated at each grid point of the domain taking into account all the time 
series: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥,𝑦𝑦)  =  �
1
𝑁𝑁𝑡𝑡
�(𝑅𝑅𝑅𝑅𝐻𝐻𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡, 𝑥𝑥,𝑦𝑦)  −  𝑅𝑅𝑅𝑅𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡, 𝑥𝑥,𝑦𝑦))2
𝑁𝑁𝑡𝑡

𝑡𝑡=1

 

where Nt is the number of time steps included in the time series. Figure 82 presents a spatial view of this 
RMSE(x, y) for the three experiments. The Alboran Sea and the Algerian coast are much more energetic areas 
than the northern part of the western Mediterranean basin; it is in these areas where the RMSE is higher for 
the three experiments, while it is relatively low for the rest of the domain. The contribution of drifters allows 
to better represent the eddy structure along the Algerian coast. At 37°N and 2°E in experiment 1 (Figure 82a) 
there is a structure with high RMSE, while for experiments 2 and 3 the RMSE is lower in this area (Figures 82b 
and c).  
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Figure 82: RMS of the differences between reconstructed and native run SSH fields at each grid point calculated over the time period 
for (a) experiment 1, (b) experiment 2 and (c) experiment 3.  

Comparison in surface currents 
The native run circulation on 4 February 2010 (Figures 83e and f) shows the energetic Algerian current along 
the coast and a meander around 2.5°E. The three MIOST experiments reconstruct the current along the coast 
and the meander (Figures 83a-c), however the intensity of this current west of 2.5°E is better reconstructed 
for the two experiments with drifters. On the other hand, the thickness of the current reconstructed by 
MIOST is larger compared to the thickness of the current in the ocean truth. 

In the rest of the area, the circulation reconstructed from experiment 1 shows small-scale current structures 
with amplitudes up to 0.3-0.4 m/s. The eddy centred at 4°E, 38.5°N is reconstructed using only altimetry 
pseudo-observations, but it is slightly more intense (and closer to the ocean truth) in the experiments 
including drifters. The two small eddy structures centred at ~2.75°E, 38.5°N and ~2.25°E, 39°N in the ocean 
truth are slightly reconstructed by experiments 1 and 2, and more clearly visible in the reconstruction from 
experiment 3, even with lower magnitude than in the ocean truth. 

The circulation on 9 February 2010, a few days after the circulation shown in Figure 83, presents the Algerian 
current and the meander, that has almost detached from the main current (Figure 84). Similar to the other 
date analysed, the MIOST experiments reconstruct an Algerian current that is wider and smoother than the 
native run. The intensity of the meander is better represented by the reconstructions including drifter data. 
Concerning the small-scale structures in the rest of the domain, the experiment with 10% of drifters 
(experiment 2) seems closer to the ocean truth than the two other experiments. 

Qualitatively the drifter data seem to improve the surface current reconstruction, however the magnitude 
remains smoother. In this example of the Algerian current the velocity magnitude is better represented in 
the reconstructions including drifters, however, as the reconstructed Algerian current is wider than in the 
ocean truth, a point-by-point error will certainly be worse for these two experiments than for experiment 1 
(using only altimetric pseudo-observations) which represents a less intense coastal current. 
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Figure 83: Circulation (black arrows represent the direction and color the magnitude of the surface currents) on 4 February 2010 
reconstructed from (a) experiment 1, (b) experiment 2 and (c) experiment 3. Pannel (d) shows the 30% of drifters on the 

reconstruction date: the drifters whose points are circled in black are the common drifters between experiments 2 and 3. The last 
panels show the native run circulation (vectors and magnitude) on the reconstruction date and the drifters circled in white used for 

(e) experiment 2 and (f) experiment 3. 

 

Figure 84: Circulation (black arrows represent the direction and color the magnitude of the surface currents) on 9 February 2010 
reconstructed from (a) experiment 1, (b) experiment 2 and (c) experiment 3. Pannel (d) shows the 30% of drifters on the 

reconstruction date: the drifters whose points are circled in black are the common drifters between experiments 2 and 3. The last 
panels show the native run circulation (vectors and magnitude) on the reconstruction date and the drifters circled in white used for 

(e) experiment 2 and (f) experiment 3. 
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To continue the circulation analysis, we computed the rotary spectra from the reconstructed currents and 
the corresponding ocean truth. Rotary spectra decompose vector time series (e.g., current data) into 
clockwise and counter-clockwise components. This allows the detachment from the cartesian coordinate 
reference. These spectra were computed over the different areas highlighted in Figure 85. The selected 
regions represent areas with different oceanic variability: very intense for the three areas in the south and 
less intense for the area in the northeast. The EuroSea zoom zone (region including the CTD sampling of 
subtask 2.3.1) is smaller and with intermediate variability. 

 

Figure 85: Standard deviation of the current magnitude computed over the whole period from the ocean truth. The black boxes are 
the areas in which energy spectra have been calculated. 

Figure 86 shows the clockwise and counter-clockwise rotary spectrums calculated over each area (Figure 85). 
In all regions the clockwise and counter-clockwise energy for the three reconstructions is close to that of the 
"ocean truth" for scales larger than 15 days. Below 12 days the clockwise and counter-clockwise energy 
decreases abruptly for experiment 1, which is explained by construction because in MIOST the decorrelation 
time scale is about 10 days and finer scales are not reconstructed. The ageostrophic mode of MIOST used in 
the reconstructions with drifters can represent signals with temporal scales down to 2 days. We observe that 
there is more energy at scales smaller than 10 days for experiment 2, and even more energy for experiment 
3 (almost with the same intensity as the ocean truth and even slightly higher at the Alboran Sea). This 
suggests that the more drifters are added, the higher is the energy at high temporal frequencies. MIOST, and 
in particular the ageostrophic mode, allows to reconstruct structures with faster time scales than altimetry 
alone. But it is likely that the MIOST reconstruction at time scales below 10 days adds noise and/or misplaces 
structures. 
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Figure 86: (left) Clockwise and (right) counter-clockwise rotary spectrum of the total surface currents from the MIOST experiments 
and ocean truth calculated over the areas shown in Figure 85. From top to bottom: the Alboran Sea, the Algerian coast, the North-

East area, the South-East area and the EuroSea zoom area. In each pannel the spectrum of the ocean truth is shown in grey, the 
spectrum of experiment 1 is shown in blue, the spectrum of experiment 2 in green and the spectrum of experiment 3 in orange.  

Finally, the RMS of the differences is also calculated for the magnitude of total surface currents at each grid 
point of the domain taking into account data over the temporal period: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥,𝑦𝑦)  =  �
1
𝑁𝑁𝑡𝑡
�(|𝑈𝑈𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡, 𝑥𝑥,𝑦𝑦)|  −  |𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡, 𝑥𝑥,𝑦𝑦)|)2
𝑁𝑁𝑡𝑡

𝑡𝑡=1

 

where Nt is the number of temporal steps in the considered period. In maps of RMSE(x, y) (Figure 87) we 
observe higher values in areas of higher variability (see Figure 85), while the three experiments represent 
similar patterns and the differences between them are small. 



 
 
 
 

86 
 

 

Figure 87: RMS of the differences between the reconstructed surface current magntiude and the ocean truth for (a) experiment 1, 
(b) experiment 2 and (c) experiment 3. 

To analyse the contribution of drifters on the RMSE(x, y), we compute the %RMSE(x, y) defined as:  

%RMSE(x, y) = 100*[ RMSEexp_drifters(x, y) - RMSEexp1(x, y) ] / RMSEexp1(x, y), 

where RMSEexp_drifters(x, y) is the RMSE(x, y) calculated for the experiments with drifters (experiment 2 or 
3). When this percentage is negative the contribution of drifters improves the RMSE(x, y), while when it is 
positive the contribution of drifters degrades the RMSE(x, y) compared to the experiment using only altimetry 
data (experiment 1). 

 

Figure 88:  %RMSE(x, y) calculated for the surface current magnitude reconstructed in (a) experiment 2 and (b) experiment 3. 

Figure 88a shows more areas of improvement than deterioration. In particular, the eddy structure around 
2°E, 37.5°N is better represented in current magnitude for the reconstruction of experiment 2, while the area 
of lower variability at the northeast of the basin (Figure 85) appears more deteriorated. For the 
reconstruction of experiment 3 (Figure 88b), the deterioration areas are more intense and widespread, 
especially in the Gulf of Lyon. However, the improved areas are also slightly more intense, for example in the 
Alboran Sea. This point-by-point comparison shows that the reconstruction with 30% of drifters (experiment 
3) creates total currents that are not in agreement with the ocean truth. This is probably due to the fact that 
there is too much signal projected on the ageostrophic modes with this reconstruction, which is not the case 
of the reconstruction with 10% of drifters (experiment 2). 
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12.3. Conclusions and perspectives 
The addition of drifter data to the MIOST reconstruction slightly improves the SSH field on average over the 
whole area. In particular, the improvement occurs in specific regions. For example, the contribution of 
drifters improves the SSH signal of the eddy detected north of the Algerian coast (not observed by altimetry). 
However, the SSH signal is slightly degraded in areas with less intense activity. 

Concerning the reconstruction of total currents, the improvement due to the contribution of drifters is more 
difficult to quantify. Qualitatively, structures such as the Algerian current and the detached eddy are clearly 
improved by the addition of drifters in the examples in February 2010. In addition, in these examples, smaller, 
less intense eddy structures have a similar size and position than in the ocean truth, while the intensity is 
consistent but smoother. However, although the Algerian current intensity has been improved, this current 
is larger in the MIOST reconstruction with drifters than in the native run, which increases the RMS of the 
errors.  And in fact, the overall point-by-point RMSE shows more degraded areas in comparison to the 
geostrophic currents reconstructed only with SLA data, which are less intense than the total currents 
reconstructed merging altimetric SLA with drifters. The point-by-point differences seem a severe 
quantification for the total currents and not fully appropriate for their evaluation. It would be interesting to 
work on new structure-based diagnostics for currents. For example, quantify the intensity of the Algerian 
current and its positioning, as well as the meanders that form and detach, to better account for the 
contribution of drifters. 

Besides, the study of the temporal rotary spectra at different areas shows that the energy at time scales 
smaller than 10 days is added by drifters and the experiment with 30% of drifters reaches the level of energy 
of the ocean truth. Thus, consistent with the qualitative better reconstruction of the Algerian current and 
associated eddies, the use of drifters adds accurate signal in the spectra. However, in less energetic areas the 
use of 30% of drifters may add some noise. It means that when increasing the number of drifters used for 
the mapping (3 times the actual number of drifters in this case), we should also adapt the parameters of our 
reconstruction. 

Note also that the comparison of currents with the native run was done with a spatially degraded version 
averaged over one day. The variability of currents over a day is not negligible and therefore the difference 
between the reconstructed currents and the degraded ocean truth contains the differences between the 
instantaneous field at 12:00 (reconstruction time) and the ocean truth averaged field. In future work we 
should make all the comparisons with the original high-resolution native run. 

To conclude, the use of drifters will contribute to the reconstruction of SSH and currents and will be thus 
useful for SWOT validation. To reach this objective we should define new metrics rather than point-by-point 
RMSE to validate small-scale structures such as eddies or coastal currents. For instance, we could compare 
front or eddy characteristics (radius, intensity…). We should also continue working on MIOST 
parameterizations.
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Conclusions  
Deliverable 2.3 presents the study conducted in Task 2.3 of the EuroSea project. First, we have analysed 
different sampling strategies aimed to reconstruct fine-scale currents (~20 km), such as those that will be 
conducted to validate SWOT satellite observations. From this evaluation we can provide recommendations 
for the design of in situ experiments that share the same objective. In the Mediterranean study region, 
distinct strategies provide reconstructions similar to the ocean truth and, hence, they are good options. A 
good compromise considering the advantages of each sampling strategy is the reference configuration, 
consisting of CTD casts separated by 10 km and down to 1000 m, sampling the domain in 4.3 days. A faster 
valid alternative is to release the rosette CTD casts down to 500 m depth (3.1 days). An even faster valid 
strategy consists of changing the rosette CTD casts for an underway CTD with a horizontal spacing between 
profiles of 6 km and a vertical extension of 500 m (1.8 days); the scores in this case are higher than for the 
configuration with rosette CTD casts down to 500 m depth. A sampling strategy not appropriate for our 
objective is the configuration consisting of an underway CTD sampling one profile every 2.5 km and down to 
200 m. Regarding seasonality, the reference configuration is a sampling strategy that provides 
reconstructions similar to the ocean truth in summer and in winter. 

In the Atlantic study region, sampling strategies consisting of CTD profiles down to 1000 m depth provide 
reconstructions with higher scores than the strategies that only sample the water column down to 500 m 
depth. The geostrophic velocities reconstructed from the strategies that sample the upper 1000 m depth 
have a magnitude similar to the ocean truth, while the strategies that only sample the upper 500 m depth 
reconstruct a magnitude ~50% smaller. Different horizontal spacings between CTD profiles provide fine-scale 
current reconstructions with high scores. The reference configuration, which considers a distance between 
casts of 10 km, is a good compromise between horizontal resolution, spatial coverage and sampling duration. 
The configuration consisting of an underway CTD sampling one profile every 2.5 km and down to 200 m 
reconstructs the geostrophic velocity field with an underestimation of 60% in magnitude with respect to the 
ocean truth; this is the strategy with the lowest scores also for the Atlantic region. The analysis of seasonality 
suggests that the reference configuration, which provides good reconstructions in summer, does not capture 
the structures present in the region of study in winter. 

The evaluation of different sampling strategies was done applying an advanced version of the spatial optimal 
interpolation used in field experiments, which also includes the temporal variability of the observations. An 
extensive analysis to find the optimal temporal correlation scale has been conducted, finding that a scale of 
10 days gives similar reconstructions than using a scale of 2 days. In the same context, we have tested two 
additional reconstruction methods. A machine-learning technique has been evaluated to reconstruct surface 
salinity and temperature fields. A slight improvement has been detected with respect to the spatial optimal 
interpolation which motivates further development of this approach. The second reconstruction method is 
based on model data assimilation. Four experiments have been simulated: (1) no data assimilation, (2) 
assimilation of SLA, SST and Argo, (3) assimilation of SLA, SST, Argo and CTD, and (4) assimilation of only CTD. 
The assimilation of data improves the reconstruction of 3D temperature and salinity fields with respect to 
the simulation with no data assimilation. The experiments that provide more similar reconstructions to the 
ocean truth are those including CTD pseudo-observations. Regarding SLA, the centred RMSE metric shows 
that the best reconstruction is obtained for the experiment only assimilating SLA, SST and Argo. For SST we 
detect differences in the two regions analysed. In the whole modelling domain, the decrease of the 
normalized RMSD is obtained when assimilating SST. In the CTD sampling region, the two experiments 
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including CTD pseudo-observations provide better reconstructions of SST. The simulation assimilating all data 
(SLA, SST, Argo and CTD) reconstructs the SST field more similar to the ocean truth.  

Finally, we have evaluated the MIOST reconstruction technique to map nadir altimetry using drifters. The 
inclusion of simulated drifters introduces slight improvements in the reconstruction of SSH over the whole 
area. In particular, the improvement is observed in specific structures such as the Algerian current and the 
eddies detected near the current. In less energetic areas the SSH signal is slightly degraded when using 
drifters. Regarding the reconstructed circulation, we observe a qualitative improvement in the structures 
mentioned before. However, differences in the size/position of these features increase the point-by-point 
RMSE. In the whole region this metric shows more degraded areas when including drifters in comparison to 
the geostrophic currents reconstructed only from SLA data, while these currents are less energetic than the 
total currents reconstructed when including drifters. The RMSE metric is not appropriate for this evaluation 
and in future work we will explore structure-based diagnostics. Indeed, promising results are obtained from 
the spectral analysis: the energy at time scales smaller than 10 days is added by drifters, and the experiment 
tripling the actual number of drifters reaches a level of energy similar to the ocean truth. Note that when 
increasing the actual number of drifters the parameters of the reconstruction need to be adapted to account 
for additional noise. In conclusion, the merging of nadir altimetry with drifters can improve the 
reconstruction of SSH and surface currents and will be thus useful for SWOT validation. New metrics based 
on the analysis of structures are more appropriate than the point-by-point RMSE to validate features such as 
eddies or coastal currents. We should also continue working on MIOST parameterizations. 

Availability of data and codes  
• The codes developed in subtask 2.3.1 to evaluate different sampling strategies are published in 

GitHub: https://github.com/bbarcelollull/EuroSea_subTask_2.3.1 
• The dataset generated in subtask 2.3.1 of the EuroSea project is published at Zenodo: 

https://doi.org/10.5281/zenodo.6798018  
• The codes to simulate observations of SWOT, nadir altimetry and drifters are available at: 

https://github.com/ocean-next/EUROSEA.git 
• Simulated observations of SWOT: https://github.com/ocean-

next/EUROSEA/blob/main/swot_pseudoobs.md 
• Simulated observations of nadir altimetry: https://github.com/ocean-

next/EUROSEA/blob/main/nadir_alongtrack.md 
• Simulated observations of drifters: https://github.com/ocean-

next/EUROSEA/blob/main/lagrangian_traj.md 

https://github.com/bbarcelollull/EuroSea_subTask_2.3.1
https://doi.org/10.5281/zenodo.6344707
https://github.com/ocean-next/EUROSEA.git
https://github.com/ocean-next/EUROSEA/blob/main/swot_pseudoobs.md
https://github.com/ocean-next/EUROSEA/blob/main/swot_pseudoobs.md
https://github.com/ocean-next/EUROSEA/blob/main/nadir_alongtrack.md
https://github.com/ocean-next/EUROSEA/blob/main/nadir_alongtrack.md
https://github.com/ocean-next/EUROSEA/blob/main/lagrangian_traj.md
https://github.com/ocean-next/EUROSEA/blob/main/lagrangian_traj.md
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