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Executive summary 
This framework will be incorporated into a time-series (TS) data synthesis product. The framework will be 
used to indicate the consistency of biogeochemical (BGC) time-series data between different ship-based 
time-series sites. It differentiates between three different “consistency categories”: 1) Metadata Availability, 
2) Measurement and Analyzing Techniques and 3) Applied Quality-Control (QC). For each of these categories, 
a flagging scheme will be implemented based upon pre-defined “consistency criteria”. All data consistency 
flags combined provide a comprehensive and easy to understand indication of the degree of consistency of 
the incorporated time-series data. 

A special emphasis is put upon the third consistency category, “Applied Quality Control”, as - despite of the 
potential to increase the precision and accuracy of the measured data - only very few QC procedures are 
established within the BGC time-series community. The heterogenic nature of the time-series sites does not 
permit a “One-fit-all, Best-Case” QC routine, as one routine only cannot meet the needs of all time-series 
sites. To accommodate for this, an overarching QC guideline based upon a decision tree model has been 
developed, which leads to the most appropriate QC routine available. The suggested QC routines in turn are 
further categorized from “Best” to “Minimum”, depending on their potential to identify bad samples and/or 
to detect systematic biases. The guideline is applicable for all BGC ship-based time series sites and the 
recently developed “Regular Outlier Test” (ROT, EuroSea milestone MS13) has been incorporated and 
categorized as “Best”. Evaluation results of the ROT QC routines are also included.  
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1. Background 
Biogeochemical (BGC) time-series data is of great importance for a multitude of applications ranging from 
the identification of temporal and spatial patterns to the validation of autonomous networks and model data. 
Moreover, it “[…] represent(s) the only means to distinguish between natural and anthropogenic forcings.” 
(Benway et al., 2019). In the OceanObs’19 ocean time-series review article of Benway et al. the authors called 
amongst others for improved BGC time-series data integration. Following this call and embracing EuroSea’s 
vision of “[…] a user-focused, truly interdisciplinary, and responsive European ocean observing and 
forecasting system […]”, we are working on a BGC time-series pilot synthesis product. Its mission is to bring 
the ocean BGC time-series community together to jointly develop a sustainable and consistent synthesis data 
product and agree on Best-Practices1, striving for OCG2 network status and delivering timely and high impact 
BGC TS-data. In particular, EuroSea’s objectives 3) Improving and enhancing the readiness and integration of 
ocean observing networks and 4) Enabling FAIR3 data, supporting integration of ocean data into Copernicus 
Marine Service4, EMODnet5 and SeaDataNet6 portfolios are addressed. 

 

 

Figure 1. Station map of time-series product pilot 

                                                           

1 https://www.oceanbestpractices.org/ 
2 https://www.goosocean.org/index.php?option=com_oe&task=viewGroupRecord&groupID=103 
3 FAIR = findable, accessible, interoperable, and reusable 
4 https://marine.copernicus.eu/  
5 https://emodnet.ec.europa.eu/en  
6 https://www.seadatanet.org/  
 
 

https://www.oceanbestpractices.org/
https://www.goosocean.org/index.php?option=com_oe&task=viewGroupRecord&groupID=103
https://marine.copernicus.eu/
https://emodnet.ec.europa.eu/en
https://www.seadatanet.org/
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Table 1. Participating time-series stations with main characteristics and regions indicated. 

 Location Time Range Frequency Depth 
CVOO 17.6°N, 24.3°W 2006 - Seasonal 3600m 
ESTOC 29.2°N, 15.5°W 1994 - 4 cruises pa 3600m 
Radiales 43.4°N, 8.4°E 1989 - Monthly 80m 
ALOHA 22.8°N, 158.0°W 1988 - Monthly 4800m 
KNOT 44.0°N, 155.0°E 1997 - 1 - 3 cruises pa 6000m 
K2 47.0°N, 160.0°E 2001 - 1 - 3 cruises pa 6000m 
Munida 45.77° - 45.84°S 

170.22° - 171.54°E 
1998 - 6 cruises pa 1000m 

Irminger 64.33°N, 28.0°W 1983 - 4 cruises pa 1000m 
Iceland 68.0°N, 12.67°W 1983 - 4 cruises pa 1850m 
CARIACO 10.5°N, 64.7°W 1995 - 2017 Monthly 1310m 
DYFAMED 42.25°N, 7.52°W 1991- Monthly 2400m 

 

Atlantic 
Pacific 
Nordic Seas 
Marginal Seas 

 

The pilot product includes data from in total eleven time-series sites. The selection has been based upon the 
overarching goal to represent the entire spectrum of time-series sites globally present, see Table 1 and Figure 
1. The pilot focuses on all BGC Essential Ocean Variables (EOVs, GOOS7) measured by at least one of the 
participating ship-based time series sites, see Figure 2. Possibly, this can be extended to additional EOVs in 
the future once the dataflow is established and proven to be successful.  

To facilitate the development of the pilot product and to ensure community-agreed upon practices, the time-
series station PIs have been consulted on a regular basis with the initiation being the international workshop 
on BGC time series data (November 2020). During the workshop, four different working groups on the topics 
of 1) Coordination, 2) Commonality of Methods, 3) QC- and Data Handling and 4) Data Policy have been 
formed to focus on specific tasks. Working groups 2) and 3) being in particular relevant for this deliverable. 
Furthermore, a general concept note has been generated to reach and consolidate consensus among all 
participants setting the basis for the work to come. 

                                                           

7 https://www.goosocean.org/index.php?option=com_content&view=article&id=283&Itemid=441 

https://www.goosocean.org/index.php?option=com_content&view=article&id=283&Itemid=441
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Figure 2. Focused variables of pilot product, defined as Essential Ocean Variables (EOVs) by GOOS7. Variables measured by at least 
one of the participating sites highlighted in dark orange. 
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2.  Data Consistency 
At first glance, data synthesis and the related data provision appear to be relatively straight forward tasks. 
However, the success and readiness of a synthesis product strongly depends on its data consistency, i.e. on 
the interoperability and comparability of the integrated data. Note that these characteristics are closely 
related to each other but are not synonyms; comparability can be understood as the goal of consistency. 
Obtaining truly consistent data in a heterogenic ocean observing system, even if focused on - seemingly - 
homogenous ship-based time series data only, is a very difficult task.  

Besides the diversity of used ontologies, different applied methodologies, from the actual measurement to 
the analysis of the sample, are the main root of the inconsistencies of time-series data. Clearly, scientists are 
aware of these inconsistencies and numerous studies have been undertaken to assess their implications 
(Aoyama et al., 2016; Bockmon and Dickson, 2015; Álvarez et al., 2015). And moreover, nowadays strict 
Quality-Assurance (QA) and Best-Practices (BP) guidelines, including the application of (certified) reference 
material, are more commonly established and distributed among the community. Eventually, the wide-
spread use of these, as well as more common inter- and intra-laboratory comparison experiments (e.g. 
Aoyama and Gallia, 2018), will erase most – if not all – inconsistencies.  However, presently and especially in 
historical data, multiple inconsistencies are present. In combination with limited QC routines for marine BGC 
time-series data (see Quality Control Guideline), generating a synthesis product with fully comparable 
(historical) data might be unreachable for now. Nonetheless, additional assessments of the provided data 
and metadata can yield an indication for the degree of consistency of the different time-series data and thus 
increase data interoperability and comparability. 

 

Figure 3. Illustration of data consistency flags for the different categories 

To this end, the time-series product QC- and data handling working group has defined three main 
“consistency” categories, see Figure 3. In the final pilot product, flags are assigned to each category. These 
are based on the extent to which a parameter of a particular station visit meets predefined "consistency" 
criteria. All data consistency flags combined then provide a comprehensive way to indicate the degree of 
consistency of the time-series data. 

Consistency categories: 

1) Metadata Availability 

As the name suggests, this category checks for the availability of metadata. The time-series product 
metadata working group has developed a metadata template that covers – in addition to CTD data - all 
BGC EOVs measured by at least one of the participating time-series sites, see Figure 1. Through this 



 
 
 
 

6 
 

coherent metadata collection, the completeness, findability and open access of the information are 
guaranteed. And further, the Bermuda workshop recommendations (Lorenzoni and Benway, 2013) for 
each parameter are more visible and “mapping” between the different ontologies out there is achieved. 
The template has been developed on the basis of the (NCEI8) SDG14.39 metadata template for inorganic 
carbon variables and based upon results from the SCOR Working Group “Towards comparability of global 
oceanic nutrient data (COMPONUT)”10, e.g. the “GO-SHIP Repeat Hydrography Nutrient Manual” (Becker 
et al., 2020). Since the applied methodology varies with time, the metadata had to be provided for each 
station visit separately. As this is very labor intensive and often requires mining 20-year-old cruise 
reports, not all sites were able to provide all the queried metadata. The time series product differentiates 
between “Not present” (flag = 0); “Existing but incoherent or possibly incomplete” (flag = 1); “Provided 
via the community agreed BGC metadata template” (flag = 2). 

2) Measurement and Analyzing Techniques 

In this “consistency category” the existing metadata information are analyzed and checked for the 
compliance of Measurement and Analyze Techniques in respect to known Best-Practices (or established 
guidelines if no official Best-Practices published), see Table 2. For BGC time-series data these are mainly 
provided through the Bermuda Workshop Recommendations (Lorenzoni and Benway, 2013). Presently 
and especially in historical data, multiple inconsistencies in the applied methodology are present. The 
analysis of the provided metadata from the 11 participating sites revealed inconsistencies which range 
from the usage of different CTD-sensors, analyzing instruments, probe volumes and reagents, to more 
parameter specific nuances, such as whether and how nutrients are filtered and stored (analyzed within 
24 hours, kept in a dark cool container or frozen to various temperatures), what pH-scale and dye 
(correction) has been used and whether alkalinity has been determined following spectrophotometric or 
potentiometric procedures. Usually, double or triple replicates are used to determine the precision of 
the data. However, fully traceable accuracy estimates are rarely given.  

Eventually, the time series product classifies the methods as one of the following: “Do not follow known 
BP” (flag = 0; red light in Figure 3); “Follow known BP” (flag = 1; yellow light in Figure 3); “Follow known 
BP, provide accuracy- and precision estimates and participate in inter- and intra-laboratory comparison 
exercises” (flag = 2; green light in Figure 3). 

3) Applied Quality Control 

This category indicates the degree of the applied analysis checks (1st and 2nd QC), which aim at increasing 
the precision and/or accuracy of the data. During the QC, data that has already been analyzed and 
measured, is checked against neighboring samples in space and time. Note that most of the bad samples 
actually don’t make it into the actual QC, as local experts automatically screen the data during the sample 
analysis. However, typically the screening and flagging process of local experts is poorly documented and 
often remains subjective and with time and varying local experts data inconsistencies are prone to 
develop (except for flags resulting from “sanity checks”). More objective and statistically based QC 
methods try to minimize these inconsistencies and the most advanced methods (e.g. crossover routines 

                                                           

8 https://www.ncei.noaa.gov 
9 https://sdgs.un.org/goals/goal14 
10 https://scor-int.org/group/147/ 
 

https://www.ncei.noaa.gov/
https://sdgs.un.org/goals/goal14
https://scor-int.org/group/147/
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(Tanhua et al., 2010)) actually try to establish baselines making data comparable solely through QC 
methods. However, of course QC methods have some limitations. Through the analysis of the collected 
metadata, we have been able to identify quite a large gap when it comes to these additional checks, 
especially in regard to accuracy checks (i.e. little evidence / documentation on performed 2nd QC). In the 
best cases, documented QC is limited to the “sigma-criteria”, i.e. semi-automatic flagging of samples 
beyond two or three standard deviations of the total historical mean. To improve this status quo, the QC 
and data handling working group has developed a clear QC guideline and routine, see Figure 4. 

 In the pilot product the Quality Control flags either indicate “No QC checks” (flag = 0); “Individual” (flag 
= 1); “Follows proposed QC routine of data product” (flag = 2). 

 

Table 2. Selected analysis recommendations for the BGC EOVs of the pilot product. 

Parameter (discrete) Analysis Recommendations (selected examples only) 

Oxygen Winkler titration 
Record draw temperature immediately after sampling 
Potassium iodate from OSIL or CSK 

Total Dissolved Inorganic Carbon Coulometry  
Follow Dickson et al., 2007 
Use CRMs 
Report in µmol/kg 

Total Alkalinity Open cell potentiometric titration  
Follow Dickson et al., 2007 
Use CRMs 
Report in µmol/kg 

pH Spectrophotometric 
Use a purified indicator dye  
Document scale, temperature, standards and dye-indicator 

Nutrients Autoanalyzer (low nutrient seawater as carrier solution) 
If stored silicate should be refrigerated others frozen (-20°C) 
Use (C)RMs 
Document standards and filters 

Particulate Organic Matter High Temperature Combustion 
Run total C (Elemental Analyzer) and PIC (Coulometrically)  
Assess POC by difference 
Ash hydrolysis for POP 
Reporting filtration volume (dry for 24 hours at 60°C) 

Dissolved Organic Carbon High Temperature Combustion 
Glass vials as containers 
Use combusted GF/F filters housed in polycarbonate in-line filters 
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3. Quality Control Guideline 
The development of the community-agreed quality control techniques for discrete BGC time series data 
represents an essential part of the pilot product. The proposed routine follows a clearly outlined decision 
tree, and the applied checks make in particular use of comparisons with historical time-series data. The main 
goal of this routine is to support scientists in flagging of single samples as well as detecting systematic biases 
of particular station visits in time. I.e. the here proposed QC scheme, which combines 1st and 2nd QC (see blue 
panel below), only aims at indicating the (assumed) quality (accuracy and precision) of a single sample and/or 
station visit. We do not want to adjust for possible biases as the existing methods do not allow for such 
rigorous data interventions. The main result of the QC is to (re-)assess the flags of all samples. As already 
many different flagging schemes exist and since we do not want to introduce yet another flagging scheme, 
the TS pilot data product will apply the consolidated World Ocean Circulation Experiment (WOCE) water 
sample flagging scheme (Jiang et al., 2022), see Table 3. 

Precision vs. Accuracy 
The precision of data is a measure of the statistical variability of the data, i.e. the closer samples from 
repeated measurements (e.g. duplicates) are to each other, the more precise the dataset is. It is 
important to understand that precise data do not need to be accurate, i.e. precise data can deviate 
from a so called “true value”.  Eventually, it is the aim of 1st QC techniques to improve the precision of 
the dataset by identifying single bad outliers of a particular cruise/cast. The 2nd QC in turn mainly 
checks against historical data as a proxy for the true value. It, thus, aims at increasing the accuracy by 
identifying systematic biases. 

 

We also want to stress that the developed QC methods by no means aim at replacing existing individual 
quality assurance (QA) routines nor the need for the application of (certified) reference materials. After all, 
following known Best-Practices during data acquisition in the field all the way to the analysis in the lab (e.g. 
using appropriate sensors, well-established methods, sampling duplicates etc.) as well as following strict QA 
guidelines (e.g. using appropriate storing facilities, making use of calibration curves etc.) and participating in 
inter- and intra-laboratory comparisons, are the strongest and most important fundaments for high quality 
data. 

Table 3. Consolidated WOCE Flagging Scheme (following Jiang et al., 2022) 

Flag Description 
0 Interpolated data 

1 Not evaluated / quality unknown 
2 Acceptable  
3 Questionable  

4 Known bad 
6 Mean of replicates 
9 Missing value 
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3.1. Decision Tree 
Each time-series site has unique characteristics. The sites strongly depend on the location (depth and 
seasonal influence), funding opportunities (duration and frequency of visits) and scientific goals (parameters 
measured).  All these differences have to be taken into account. Hence, a “One-fit-all” QC method for marine 
BGC time-series stations simply doesn’t do justice to the great variability of the time-series data. To still 
provide a consistent routine for all time-series sites, the QC- and data working group has based the developed 
QC on a decision tree, see Figure 4. Using conditions which describe the characteristics of a time-series site, 
the tree eventually points to the best fitting methodology. Clearly, some of the suggested methods are more 
advanced and throughout than others, which is reflected in the color scheme of the end-nodes, i.e. suggested 
method.  

In the “regular tree”, there are in total seven different end nodes, i.e. QC methods, which can be applied to 
the data. These are (from least to most thorough, for details see the following sections): 

1) Property-Property Plots (PPT) 
2) Seasonal Sigma Test (So – Test) 
3) Seasonal Outlier Test (SOT) 
4) Semi Regular Outlier Test (Semi ROT) 
5) Regular Outlier Test (ROT) 
6) Semi Detrended Outlier Test (Semi DOT) 
7) Detrended Outlier Test (DOT) 

In addition, there is a “short-cut” to a very throughout check of the accuracy of an entire station visit. If the 
site has a known layer of no or very little long-term variability and seasonality, i.e. a “Reference Layer”, then 
the so-called “Crossover Analysis” (CRS, Tanhua et al., 2010) can be performed. It is suggested that whenever 
possible this extra test should be carried out. 

 

Figure 4. Time Series Niskin Bottle Quality Control Decision Tree; Colors: Green = BEST; Yellow = GOOD; Orange = OK; RED = 
Minimum; Abbreviations: CRS = Crossover Analysis; DOT = Detrended Outlier Test; SOT = Seasonal Outlier Test; So = Seasonal Sigma 
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3.2. Property-Property Plots 
Time-series sites with a very short history (< 5 years) have very limited QC possibilities. The same holds for 
sites in areas which show signs of long-term variability (inter-annual or decadal) and infrequent 
measurements, i.e. with seasonal gaps. The former can be analyzed using different models, e.g. linear 
regression, in the form of the R2 statistic. In both cases the only feasible QC option is to make use of property-
property plots. 

To support scientists, this rather visual inspection can be done using the AtlantOS QC tool (Velo et al., 2021), 
which in turn has been exclusively developed for the 1st QC of cruise section data. For its application the 
entire dataset must be on the same scale/unit and should be reported using the WOCE ontology. The data 
integration process of the TS data product adapts the data formats if needed automatically. The AtlantOS 
software in turn enables the user, i.e. the QC scientist, to graphically illustrate, analyze and manage the data 
by providing an interactive user-face, see Figure 5. Single profiles, i.e. measurements from a particular station 
visit in time, can be inspected using multiple property-property plots. By doing so and making use of known 
relations (e.g. Redfield ratio, Hoppema and Goeyens 1999) outliers against all other existing profiles can be 
detected more easily, see Figure 5. A rule of thumb is to report a suspicious sample to the PI, if it is an outlier 
in at least three different property-property plots. However, only very strong outliers should be flagged this 
way, as this method ignores any seasonality or long-term trend effects. In addition, the AtlantOS QC (Velo et 
al., 2021) software enhances the transparency of the QC process as evidence and version-control to the 
resultant flag changes is given automatically. 

 

 

Figure 5. AtlantOS QC used for the time-series station HOT (see Figure 1); Tab of Alkalinity (ALKALI) is shown with 6 different property-
property plots. The spark highlights an outlier of the profile shown in red. 
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3.3. Seasonal Sigma Test 
The sigma test in general is the easiest statistically based method to identify outliers. Depending on the 
expected variability of the variable in question the scientist can choose between a 2σ or a 3σ test (z-score). 
The former flags samples outside of two standard deviations of the historical mean value, i.e. it flags samples 
smaller or larger than 95% of the data (symmetrically). The 3σ test is more significant and robust but might 
not catch many outliers as it only flags samples outside 99% of the mean. We only advertise to restrict the 
QC to sigma-tests in case of infrequent data with seasonal gaps and no or little long-term variability. Further, 
if the site has measured oxygen we suggest to perform the SOT instead. For the sigma test with irregular data 
we further propose to only compare seasonal data with each other, i.e. only winter samples with winter 
samples, spring samples with spring samples etc. Most effective is this method if analyzing layer by layer, 
usually these layers are easy to identify as most time-series sites have common depth on which samples are 
drawn from. Depending on the location however, it might be beneficial to analyze the data not on pressure 
levels but on density surfaces (sigma or gamma11). The “typical” density surfaces can be calculated using the 
typical sample depths (pressure) and the variable values should be interpolated to these levels using a quasi-
Hermetian piecewise polynomial without extrapolation. Lastly, note that the sigma test works best for 
normally distributed data. If that is not the case (Kolmogorov-Smirnov goodness-of-fit hypothesis test), 
interquartile ranges around the median might be better suited to check for outliers. 

3.4. Seasonal Outlier Test 
As mentioned above if a time-series site meets the same condition as the ones that lead to the sigma test 
and if the site additionally measures oxygen, the Seasonal Outlier Test should be performed for nutrients and 
the inorganic carbonate system. This method also includes the Seasonal Sigma Test but further makes use of 
CANYON_B12 (Bittig et al., 2018) comparisons. By doing so it increases the robustness of the statistically 
assigned flags. All other suggestions, such as to only compare seasonal data with each other and to perform 
the tests on a layer by layer bases still hold. The test needs to follow a strict order: 

1. Check all variables using the Sσ-Test  
2. Calculate CANYON_B values (nutrients and inorganic carbon) using oxygen, salinity and temperature  
3. Calculate difference between measured value and calculated value for each layer 
4. Normalize the difference to be centered around 0 (minimizing effects of seasonal biases) 
5. Check for outliers using sigma test (z-score) if normally distributed otherwise use interquartile range 
6. If both So-Test and the additional CANYON_B comparison indicate the same outlier, flag accordingly 

(assign WOCE flag = 3)  
7. Local expert review 

 

                                                           

11 Neutral density surface 
12 CANYON_B (CArbonate system And Nutrients concentration from hYdrological properties and Oxygen using a Neural-
network version B) is a bayesian neural network that estimates nutrients and seawater CO2 chemistry variables from 
latitude, longitude, pressure, temperature, salinity, and oxygen. The neural network was trained and validated using 
the GLODAPv2 data product. It mainly serves as an alternative to (spatial) climatological interpolation, and the resultant 
“dynamic climatology” shows a much better representation of smaller scales (40–120 days, 500–1,500 km) compared 
to in situ data. 
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3.5. (Semi-) Regular Outlier Test 
If the data has highly frequent measurements, i.e. monthly, and additionally doesn’t show a strong seasonal 
signal, the ROT method should be applied. This method additionally compares neighboring data samples for 
large “jumps” in time and thus consists of in total three independent tests:   

 

1) Sigma-Test: 
a. 2σ (or 3σ) test using z-score: if time-series is normally distributed (Kolmogorov-Smirnov 

goodness-of-fit hypothesis test) 
b. 1.5 Interquartile range test: if time-series is not normally distributed (Kolmogorov-Smirnov 

goodness-of-fit hypothesis test) 
2) CANYON_B normalized difference test (value - value_calculated): 

a. 2σ (or 3σ) test using z-score: if time-series is normally distributed (Kolmogorov-Smirnov 
goodness-of-fit hypothesis test) 

b. 1.5 Interquartile range test: if time-series is not normally distributed 
3) Spike test: 

Checks for “distance”, i.e. difference, between neighboring points in time. The distance is compared 
to a pre-set constant, i.e. meta-parameter. This meta-parameter has to be set individually for each 
time series site, level and parameter. 

If at least two of the three tests indicate the same outlier, the sample is flagged. Again, all tests should be 
performed on a layer by layer bases on either pressure or density surfaces. However, the restriction of 
comparing data from the same season only is redundant. Figure 6 shows an example outcome of this routine 
for alkalinity measurements of the time-series station HOT, performed on a “typical” density level (gamma). 

Subsequently, a further in-depth investigation must be performed to minimize the likelihood of flagging a 
“good” sample as questionable. To do so the sample in question should be qualitatively examined by 
evaluating it in respect to the entire profile(s) of that particular station visit, see Figure 7. If one of the 
following is true, the sample should not be flagged as questionable: 

• Salinity, Temperature, Pressure (and/or Oxygen) are “off” 
→ Density surface and/or CANYON_B calculation error 

• Too large distance between the “typical” density levels 
→ Interpolation error 

• Eddy or similar feature present during station visit 
→ Natural variability 

Otherwise, the suspicious sample should be flagged accordingly (assign WOCE flag = 3) and be reviewed from 
a local expert. In the Semi ROT, the CANYON_B comparison cannot be performed as oxygen measurements 
are a mandatory condition for these. The rest of the method is identical. 



 
 
 
 

15 
 

 

Figure 6. Station HOT gamma-interpolated ALKALI time series; Yellow dots indicate suspicious data already flagged by HOT; red dots indicate suspicious data not flagged by HOT; black dots indicate 
non-suspicious data flagged by HOT.

AT Observations at Gamma 25.5757 
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Figure 7. Final QC-scientist interface for suspicious ALKALI sample of HOT time-series. Top: Zoomed-In time-series at gamma-level 
25.5757 kg/m3 (yellow dot in Figure 6); All bottom plots show all casts of particular HOT (285) cruise visit for (left to right): Gamma; 
Pressure; Salinity; Temperature. Red dots indicate samples used for gamma interpolation and black dots (overwriting red dots) 
indicate flagged data by HOT. 

 

3.6. (Semi-) Detrended Outlier Test 
Time series data with regular monthly measurements or at least seasonal measurements can be QC’d 
independent of long-term trends and/or variability present by detrending the dataset. Thus, the detrending 
not only enables comparisons of data from different seasons but also from different years. The detrending 
method proposed is a very simple technique to minimize detrending associated errors and requirements. A 
strict order must be followed: 

1) Calculate seasonal mean for each year 
2) Use the seasonal mean to calculate yearly means 
3) Use yearly means to calculate total mean 
4) Calculate yearly anomalies (difference between total- and yearly means) 
5) Subtract yearly anomalies for each year 

The (semi-) ROT method can then be applied to the detrended dataset in an identical manner. 

However, we want to note that this method is extremely restrictive as most time-series have at least one 
seasonal gap during their measurement period and hence can almost be seen as an idealized case only. 

AT Observations at Gamma 25.5757 
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3.7. Crossover Analysis 
The crossover analysis (Tanhua et al., 2010) is heavily used in the well-established Global Ocean Data Analysis 
Project (GLODAP, Olsen et al., 2020, Lauvset et al., 2021) as the main 2nd QC method. To be applicable for the 
QC of time-series site, the site must have a very stable “reference layer”, usually depth below 1500m, and 
the cruise should have measured at least three nearby (within 2°) different profiles with at least three 
samples within that reference layer. If that condition is met, the accuracy of the entire cruise can be assessed 
using this crossover routine. Eventually, this routine compares the profiles within the reference layer 
measured from the cruise in question against profiles from other (consistent) cruises nearby to detect 
systematic biases. Of course, the non-trivial problem with this method is to identify which of the cruises is 
biased. Anyway, as this method is already described in detail in existing literature we are not going in further 
detail here. 

3.8. Evaluation of QC results 
To evaluate the suggested “BEST” QC procedure, we compared the flagging results of the ROT method with 
the already QC’d and flagged data of the HOT station (for location see Figure 1; Dave, 2018). The original 
flagging of HOT samples is well established and often traces back to real-time observational error logging 
and/or instrumental errors, e.g. bottle leaking. This makes the HOT data a good data set for the evaluation 
of the developed QC workflow. It is important to understand that the here described QC procedure cannot 
detect all of the HOT flagged samples as it purely relies on statistical analysis. Clearly, methods applied by 
the HOT scientists go beyond QC analysis and outlier detection.  

The results of the comparison between HOT flags and the QC flags for total alkalinity are shown in Figure 6 
and Figure 7. In the former, yellow marked samples indicate samples, which have been flagged by HOT and 
by the QC procedure. The other marked samples indicate flagged samples by HOT (black) or by the QC (red) 
only. In the shown example for alkalinity at a gamma-level of 25.5757kg/m3 four samples are false positive 
(red), seven samples true negative (black) and 15 true positive (yellow). Given that some true negative 
samples cannot be detected by QC and that some false positive samples could be ruled out in further 
investigation, this example shows that the QC can support scientists in improving the precision and accuracy 
of the data. However, we are aware of this being one example only. By evaluating the QC at other levels and 
other parameters we observed especially that false positive errors rise when parameters are quality-
controlled at very low concentrations, e.g. nitrate near the surface at HOT (Figure 8). Further, for locations 
with very little training data for CANYON_B (e.g. Southern Ocean, see GLODAP cruise map, Olsen et al., 2020, 
Lauvset et al., 2021) results must be treated with caution, due to the dependency of the QC on reliable 
CANYNON-B data. 
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Figure 8. Evaluation of ROT QC using gamma levels for Dissolved Inorganic Carbon (DIC), Total Alkalinity (TA), Phosphate (PO4) and 
Silicate (SiOH4) of the HOT time series data. False negative, i.e. rightfully non-flagged samples, not shown as these would blow up the 
scale 

Conclusions 
Following the call for improved BGC time-series data integration (Benway et al., 2019) and embracing 
EuroSea’s vision of “[…] a user-focused, truly interdisciplinary, and responsive European ocean observing and 
forecasting system […]”, the presented framework represents an important step forward in the overarching 
goal to obtain interoperable and comparable BGC ship-based time-series data. The framework sets a clear 
focus on high consistency and is developed with the entire spectrum of BGC time-series stations in mind. The 
focus on consistency is also reflected in the flexible QC scheme. This scheme in turn enables consistent and 
more traceable as well as more statistically profound QC decision making, eventually resulting in more 
comparable and higher quality BGC time-series data. The framework further fosters the generation and 
common usage of Best-Practices, especially in terms of data handling. With the next step, the upcoming 
release of the BGC time-series synthesis pilot product, we will implement this framework and demonstrate 
the benefits of consistent BGC time-series data to the ocean observing community. On a larger scale, we 
hope that through this framework and the corresponding data synthesis product we can increase the impact 
of the BGC ship-based time-series stations and help to establish a ship-based BGC time-series network in 
GOOS.  
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